
Process Director Documentation
Developer's Reference Guide

Last Updated: 2025-05-09, 14:17

BP Logix Inc
Process Director Documentation

Contents

Contents 2
Documentation Formatting Note 7
Text and Code Formatting Conventions 7
Icons 8
Other Conventions 9

Development Overview 10
Script Types 10
.NET Forms 10
Customization through Scripting 10

Custom Scripting/Development 12
Installing the BP Logix Visual Studio Plugin 12
Form Scripts 15
Form Script Events # 16

Process Scripts 20
Process Script Handlers 22

Knowledge View Scripts 25
Custom ASPX Pages 27
Creating ASP.NET Forms 27
Adding a New Form Definition 28
Editing an ASP.NET Form # 31
Developing a Form in the .NET environment 32
Form Controls 34

Custom Workspace Portlets 81
Custom Tasks 83
What Custom Tasks Can Be Used For 84
Form Custom Tasks 84
Process Custom Tasks 84

2 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

How Custom Tasks Work 84
Creating a Custom Task 85
Web Service Custom Tasks 87

Classes 88
Common Termination Reasons 88
bp Class 89
Business Value Class 101
Case Class 105
ConditionSet Class 110
Condition Struct 111
ContentObject Class 113
DataSource Class 139
DocumentObject Class 141
Dropdown Object Class 144
DropdownValue Object Class 146
Excel Class 148
Folder Class 150
Form Class 153
FormControl Class 173
FormMessageString Class 183
Group Class 183
MetaCategory Class 189
Partition Class 191
PDF Class 194
Process Class 200
ProcessTask Class 210
ProcessTaskUser Class 218
Project (Process Timeline) Class 222
ProjectActivity Class 225
ProjectActivityUser Class 229

Developer's Reference Guide | 3

BP Logix Inc
Process Director Documentation

Report Class 231
Rule Class 232
SystemVariable Class 234
SystemVariableContext Class 235
Task Class 237
User Class 240
Workflow Class 258
WorkflowStep Class 264
WorkflowStepUser Class 267
Workspace Class 270

JavaScript APIs 271
Form Data # 271
iPopupSimple Command # 272

Language/Culture Localization 276
Customizing the Process Director UI 276
Form Customization/Localization 277

Customization File 282
Form Control Styles 288
Creating Your Own Custom Variables 289
Session Variables 290
Shared Delegation 290

Custom Variables 291
Active Directory Custom Variables 292
Administration Custom Variables 298
Auditing Custom Variables 317
Default Settings Custom Variables 321
LDAP Custom Variables 329
List Maximum Custom Variables 333
Logs Custom Variables 336
Miscellaneous Variables 341

4 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

ML and AI Custom Variables 352
Mobile Application Custom Variables 353
Password Enforcement Custom Variables 355
Process Administration Custom Variables 361
Reporting Tool Custom Variables 364
REST Custom Variables 366
SAML Custom Variables 368
Social Media Custom Variables 378
System Custom Variables 383
Task Custom Variables 392
User Info SlideOut Custom Variables 398
User Interface Custom Variables 401
User Custom Variables 424

UI Customization 427
Adding a Custom CSS Stylesheet to Process Director # 428
Customizing CKEditor # 430
Environment Message Customization # 441

Using Web Services 442
REST Services # 443
Other REST Services 444

Web Service Authentication Settings # 444
Extending BP Logix Web Services # 445
Calling Other Web Services # 446
Available Web Services 446
Service Handle Method # 449
wsAdmin 449
wsCase 453
wsContent 456
wsForm 463
wsGroup 469

Developer's Reference Guide | 5

BP Logix Inc
Process Director Documentation

wsReport 472
wsRule 474
wsTimeline 476
wsUser 481
wsUtil 488
wsWorkflow 491

REST Services 497
The REST Request # 498
The REST Response # 499
More Information about Rest Services 500
JSON and XML for REST 500
JSONPath and XPath 502

Index 509

6 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Documentation Formatting Note

Text and Code Formatting Conventions
To highlight terms and concepts that have special relevance, this documentation
implements several formatting conventions to make key words and terms more
noticeable.

l Control Label: This format will identify the text labels or properties for Process
Director objects, or the names of dialog boxes.
Example: The Name text box.

l UI Element: This format will identify user interface elements such as buttons,
tabs, or other UI objects used to perform interface operations.
Example: The Submit button.

l Formal Control Name: This format will identify named Process Director con-
trols.
Example: A Section End control.

l Process Director Object: This format will identify named instances of Process
Director Folders, Forms, Process Timelines, Knowledge Views, etc.
Example: The Travel Expense Approval Process Timeline.

l Key Terms: This format will identify key terms and concepts introduced into the
text of the document, and which are important to learn.
Example: A Case is group of processes, transactions, or responses that define
a complex activity.

l Code: This format will identify code samples, system variables, formulas, or
other fixed programmatic syntax.
Example: Type the following formula: AirFare + Lodging.

l Code Option: A section of a code sample to denote placeholder values that
must be replaced by the user manually at design time.
Example: {CURR_USER, format=FormatType}

l Code Comment: A section of a code sample that is used for text comments,
rather than runnable code.
Example: // This is a comment.

l Code Variable: A programming object whose value is usually determined
from a command written in code.
Example: var formControls = BaseCurrentForm.FormControls;

Developer's Reference Guide | 7

BP Logix Inc
Process Director Documentation

In addition to the above, extended samples of program code are presented in a
special format to set them off from the rest of the text, as demonstrated below:

// Called after database initialized
public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Before we make SDK calls that access the database,
 // ensure DB has been opened
 if (bp.DBOpenComplete)

{
// Place custom code here

 }
}

Important text or warnings are presented in a special callout box for special atten-
tion:

This is an Important item.

Notes of general interest are also presented in special callout boxes:

This is a note.

Hopefully, the use of these formatting conventions will make it easier for you to
determine the various types of objects to which the text refers.

Icons
Some universal icons are used in the documentation. They are listed below:

ICON NAME DESCRIPTION

Link A hyperlink to the specific URL and
named anchor of a topic, heading, or
other item.

Dropdown Closed An icon that, when clicked, will expand
dropdown text in a topic.

Dropdown Open An icon that, when clicked, will close the
expanded dropdown text in a topic.

8 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Finally, some topic headers within each online document may display a link symbol
(#) when you mouse over the header. Clicking the link will navigate to that specific
section of the document, which can then be bookmarked in your browser.

Other Conventions
URLs displayed in sample will, unless used for commands or URLs used on the local
host machine, use the "HTTPS" prefix by default, as modern practice has evolved
to use the encryption layer to access URLs, instead of the plain-text method (HTTP)
of accessing URLs.

Developer's Reference Guide | 9

BP Logix Inc
Process Director Documentation

Development Overview
This document describes the code-based customization that is available for Pro-
cess Director, with the appropriate SDK license. This guide is intended for com-
panies that require customization of process or form processing, or that require
integration into other applications.

Script Types
Process Director enables you to create Knowledge View, Form, and Process
Timeline script types. All script files are stored as ASCX files in Process Director.
They can be placed anywhere in the Content List and are referenced (pointed to)
by the object definitions that call them.

.NET Forms
The .NET Form enables you to develop forms completely inside the Visual Studio
environment to enable the full functionality that .NET offers.

Customization through Scripting
Process Director provides customization options and APIs that allow the product to
provide specialized business logic needed by your organization. The programming
API enables you to customize the various functions and interfaces of Process Dir-
ector; it also enables the product to interface with external systems via API calls
made through scripting. There are three main areas where custom scripts are
implemented: Form processing, Timeline processing, and configuring user options.
This customization isn't required, but is important when you want to perform spe-
cific business logic for your requirements. The customization is provided by allow-
ing you to create and write custom .NET controls and functions. These custom
functions can get and/or modify data within Process Director or external applic-
ations.
To develop Scripts inside Visual Studio, use the fully functional Visual Studio project
installed with the product named bpVS.zip. This project includes the DLL’s neces-
sary to use Intellisense and compile-time error checking.
Additionally, you can run Process Director inside Visual Studio. This will enable set-
ting of breakpoints in custom scripts, inspection of objects, viewing logs in the

10 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Visual Studio output window, and other debugging techniques. To accomplish this,
license and install Process Director on a test/development workstation or server.
Then launch Visual Studio, select File->Open Web Site, and select the website folder
where Process Director is installed (typically C:\Program Files\BP Logix\Process Dir-
ector\website). If prompted, don't upgrade to .NET 4. Select Debug-Start Debug-
ging. If prompted, allow Visual Studio to modify web.config to enable debugging.
If you are running Process Director on a development server, you can also edit the
web.config manually to enable debugging, by adding the attribute debug="true"
in the <compilation> section, as shown below. This is NOT a recommended practice
for any production system!

<configuration>
 <system.web>
 <compilation debug="true" targetFramework="X.X"/>
 </system.web>
</configuration>

If you manually edit the web.config file, you should be aware that Pro-
cess Director will overwrite the web.config file on every full or patch
installation of Process Director.

To set breakpoints, open the relevant forms or scripts from the FormCache or
WfScriptCache folder. Once opened, breakpoints can be set, and variables can sub-
sequently be inspected or modified. Notice that the scripts and forms are over-
written in the cache folders if they are changed. You may need to right- click
Refresh the cache folders in Visual Studio to see new files appear.

Developer's Reference Guide | 11

BP Logix Inc
Process Director Documentation

Custom Scripting/Development
Process Director offers a number of methods for creating custom scripts. Script
handlers with the appropriate stubs for scripting events are provided for .NET
developers in the Visual Studio IDE, or created automatically in the Process Dir-
ector interface. The term Custom Script can mean a wide variety of things in Pro-
cess Director. Indeed, a better term might be "Custom Development" since
"scripting" can range from a small script to change the background colors of a
Knowledge View row, to building an fully functional Process Director application in
ASP.NET—though the latter would be an exceptionally rare use case.
This section of the documentation covers the various scripting/development use
cases, and provides instructions for implementing several custom development
scenarios. You can navigate to each of the topics in the section via the Table of Con-
tents displayed on the upper right corner of the page, or by using the links below.
Installing the BP Logix Visual Studio Plugin: Instructions for setting up Visual
Studio with the BP Logix Plugin.
Form Scripts: Creating custom scripts that run for Form instances.
Process Scripts: Creating custom scripts that run for Process Timeline instances.
Knowledge View Scripts: Creating custom scripts that run for Knowledge Views.
Custom ASPX Pages: Creating ASPX pages to run custom scripts, such as for imple-
menting custom business logic, independent of other Process Director objects.
Creating ASP.NET Forms: Creating custom ASCX Forms for use when developing
in the Visual Studio environment.
Custom Portlets: Creating custom Workspace portlets to display in the product
UI.
Custom Tasks: Creating your own Custom Tasks for use in your applications.
SDK Classes: Reference documentation for the Properties, Methods and Events of
all .NET classes contained in the Process Director SDK.

Installing the BP Logix Visual Studio Plugin
The BP Logix Visual Studio Plug- in integrates with Microsoft Visual Studio. It
provides the ability to drag and drop Process Director Controls onto your forms.
The easiest way to take advantage of the BP Logix Visual Studio Plug-in, use the

12 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

fully functional Visual Studio project installed with the product named bpVS.zip.
This project already has the plug-in installed and Intellisense enabled.
The following is a list of the features that are available to you in the plug-in.
Drag and Drop Control Editing. The plug-in adds an extension to the Visual Studio
Toolbox giving you a list of all controls that are available to you in the Process Dir-
ector library.

l Control Properties. Properties can now be set in the Properties box of the selec-
ted control.

l Intellisense. All controls support full Intellisense to make the parameters easier
to configure while in the Source View.

l Compile. Visual Studio will highlight compile errors.

To enable this plug-in click on the menu item at the top named View > Toolbox.
Once the toolbox is open right click in an open area and select “Add Tab”. Name
the tab “Process Director”. Ensure the new tab is selected and right-click on the
tab and select Choose Items from the list.

A dialog box will display, select the Browse button under the .Net Framework Com-
ponents tab. The browse dialog box will appear. If you have Process Director
installed, you'll find the DLL at “C:\Program Files\BP Logix\Process Director\”. If
you only have the plugin installed, you can find the DLL at “C:\Program Files\BP
Logix\Plugin\bpVS\Bin”. Once you've navigated to that folder, select “BPLo-
gix.bpVSPlugin.dll”
Then click Open and OK.

Developer's Reference Guide | 13

BP Logix Inc
Process Director Documentation

Some legacy elements in Process Director, which remain in the
product for backwards compatibility, have a dependence on the .NET
Framework v3.5, so you must install the v3.5 framework for the plug-in to
work as expected. To add this .NET Framework version, click the Start but-
ton, click Control Panel, click Programs, and then click Turn Windows fea-
tures on or off. Select .NET Framework 3.5 from the list of Windows
features, then click the OK button to install it.

Restart your Visual Studio application for the complete changes to take effect.

After Visual Studio restarts, the plugin will populate the controls in the tab you cre-
ated. You can now drag and drop the controls on the form in design mode or split
mode only. You'll also be able to use the BP Logix Intellisense. By typing your code
you'll start to see Process Director Controls, classes, etc. show in the list provided
from the Intellisense.
To enable the Intellisense inside Visual Studio, you should create a stand-alone
ASP.NET Web Application, and then add the BPLogix.bpVSPlugin.dll to the Bin dir-
ectory of the project. To create new Forms or scripts, use Add New Item->Web User
Control to create a new .ascx file. Do not place code in separate file. For Forms, you
can switch into Design or Split view to drag and drop controls onto the visual form.
You made need to build the application to enable the Intellisense. Ensure all Forms
and script files have this line at the top of the file:

<%@ Control Language="C#" AutoEventWireup="false"
 Inherits="BPLogix.WorkflowDirector.SDK.bpFormASCX" %>

14 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Additionally, you can add the following registry key to set the location where the
Plugin downloads temporary files (such as scripts and Forms) by setting the
DocFolder property:
HKEY_LOCAL_MACHINE\SOFTWARE\BP Logix\Plugin\DocFolder

Or on a 64-bit operating system:
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\BP Logix\Plugin\DocFolder

If you set this to a folder that is in your stand-alone Web Application, then you can
use Check Out and Edit for Forms and scripts. When the files are opened in Visual
Studio, they'll gain the benefit of Intellisense and compile-time error checking.

Form Scripts
Form scripts can be used for both Forms created with the Online Form Designer
and custom forms created as .ASCX files.
To develop Form Scripts inside Visual Studio, use the fully functional Visual Studio
project installed with the product, which is bundled into a ZIP archive named
bpVS.zip. This ZIP file is located in the c:\Program Files\BP Logix\Process Director\
directory by default. You can copy this utility to any computer that runs Visual Stu-
dio 2013 or higher. Cloud customers can download the plugin from the Downloads
section of the BP Logix support site.
Refer to the sample files eform_*.ascx, as well as the SamplePage.aspx file ref-
erenced in the Custom ASPX Pages section of the documentation, below.
Scripts for Forms created with the Online Form Designer should be placed into a
separate .ASCX document in the Content List. Here is the structure for this type of
script:

<%@ Control Language="C#" AutoEventWireup="false"
 Inherits="BPLogix.WorkflowDirector.SDK.bpFormASCX" %>

Developer's Reference Guide | 15

https://bplogix.zendesk.com/hc/en-us/sections/4408576448283-Process-Director-Software-and-Downloads

BP Logix Inc
Process Director Documentation

<script runat="server">
 // Events...
</script>
<script>

// Insert client-side JavaScript code and functions
here...
</script>

Scripts for .ASCX Forms are typically placed in the same file as the .ASCX source
form. Here is the structure for this type of form:

<%@ Control Language="C#" AutoEventWireup="false"
 Inherits="BPLogix.WorkflowDirector.SDK.bpFormASCX" %>

 // Actual Form contents...
<script runat="server">

// Events...
</script>
<script>

// Insert client-side JavaScript code and functions
here...
</script>

Form Script Events #
In both cases, the APIs and events available are the same. All events will be called
with the following environment:

LOCAL VARIABLE DESCRIPTION

CurrentForm Reference to the current Form
instance object

CurrentUser Optional instance of the current
User object

CurrentPartition Instance of the current Partition
object

CurrentWorkflow Optional instance of the current
Workflow object(Deprecated)

CurrentWorkflowStep Optional instance of the current
WorkflowStep object(Deprecated)

CurrentWorkflowStepUser Optional instance of the current
WorkflowStepUser object (Deprec-

16 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

LOCAL VARIABLE DESCRIPTION

ated)
CurrentProject Optional instance of the current

Project object
CurrentProjectActivity Optional instance of the current

ProjectActivity object
CurrentProjectActivityUser Optional instance of the current

ProjectActivityUser object
bp The bp environment
bpEventHandle The class that holds information

about the event that generated
postback

bpEventHandle.EventType The type of event
bp.EventType.User – A custom
button was hit
bp.EventType.Complete – A
process complete button was hit
bp.EventType.Cancel – The can-
cel button was hit
bp.EventType.Save – The Save
button was hit
bp.EventType.SaveAndClose –
The Save and Close button was hit
bp.EventType.Print – The
Print button was hit
bp.EventType.CancelClose –
The Cancel process button was hit

bpEventHandle.EventName The name of the control that ini-
tiated the postback

bpEventHandle.EventControl The actual FormControl of the con-
trol that initiated the postback

Developer's Reference Guide | 17

BP Logix Inc
Process Director Documentation

LOCAL VARIABLE DESCRIPTION

bpEventHandle.EventControl.ArrayNum The array row number of event, or
0 if event was not caused inside
array.

The Form life cycle has the following event callbacks:

<%@ Control Language="C#" AutoEventWireup="true"
 Inherits="BPLogix.WorkflowDirector.SDK.bpFormASCX" %>
<script runat="server">
// These methods are optionally overridden to allow custom
script
// to be inserted into the Form life-cycle.

// Called 1 time per form instance to initialize form fields
protected override void BP_FormInitialize()
{
}

// Called first time in ViewState that form is displayed
protected override void BP_ViewStateInit()
{
}

// Called for every event control and complete button
protected override void BP_Event(bp.EventType pEventType,
 string pEventName)
{
}

// Called prior to processing rules
protected override void BP_Rules()
{
}

// Called after processing rules
protected override void BP_Rules_Post()
{
}

// Called prior to completing before internal validation
protected override void BP_Validation()
{
}

// Called prior to completing after internal validation
protected override void BP_Validation_Post()
{

18 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

}

// Called prior to saving form data and closing form
protected override void BP_Completed()
{
}

// Called just prior to displaying a form
protected override void BP_Display()
{
}
</script>

These methods are optionally overridden to allow custom script to be inserted into
the Form life-cycle:

EVENT DESCRIPTION

BP_ FormInitialize
()

Called 1 time per form instance to initialize form fields

BP_ViewStateInit() Called first time in ViewState that form is displayed
BP_ Event
(bp.EventType
pEventType,
 string
pEventName)

See sample above for
example.

Called for every event control and complete button

pEventType: The type of control
that caused the
event

bp.EventType.User A user event from a
form control

bp.EventType.Complete One of the complete
buttons on a form

bp.EventType.Save Save form data
bp.EventType.SaveAndClose Save form data and

close form
bp.EventType.Print Print form
bp.EventType.CancelClose Cancel process or

Form submission
bpEventName The ID of the form

Developer's Reference Guide | 19

BP Logix Inc
Process Director Documentation

EVENT DESCRIPTION

pEventType: The type of control
that caused the
event

control that caused
the event

BP_Rules() Called prior to processing rules
BP_Rules_Post() Called after processing rules
BP_Validation() Called prior to completing before internal validation
BP_ Validation_ Post
()

Called prior to completing after internal validation

BP_Completed() Called prior to saving form data and closing form
BP_Display() Called just prior to displaying a form

Process Scripts
This section documents how to write custom process scripts for Process Director. A
process script is called from a Script activity in a Process Timeline definition. The
Script task type specifies a Script Function Name. This function name can a custom
script function. Your custom functions can be located on a specific custom script
file (in the Process Director database). Each step in the process definition points to
a script file.
To develop process Scripts inside Visual Studio, use the fully functional Visual Stu-
dio project installed with the product named bpVS.zip.
Using a Specific Process Script File
To write a custom script for a process, create a script file with “.ASCX” as the file
extension on your local hard drive. Add your custom script code and then upload
the file to the Process Director database using the Create New menu item in the
Content List (select Document/File in the dropdown). Browse to the location of
your ASCX file and upload the file to Process Director. This file will be displayed in
the Content List on the server. To make changes to this script file, you must check
out the file first, update it, and then upload the new version. For information about
modifying files and documents on Process Director, refer to the Implementers

20 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Reference Guide. The script for a process is configured in the Properties page of
the process definition. The script must exist in the Process Director database and it
will be called when a Script task is run in the Process Timeline. For more inform-
ation on configuring process definition properties refer to the Process Timeline top-
ics in the Implementers Reference Guide.
Writing a Process Script Function
The optional parameters specified in the Script task are used to call your Script
function in the process custom script file. For example if you specify “SOME_PARM”
as the Script Parameters specified in the Script task, the parameter to your C# func-
tion (pParm in the example below) will be set to “SOME_PARM”. If you need to
pass multiple values to the process script, you'll need to encode the values by sep-
arating them by commas or other techniques (e.g. MY_PARM,1,2). The entire string
will be passed to the process script function as a single parameter. You'll need to
parse the string into its components using C# string manipulation functions. Your
function in the script file would look as follows:

<%@ Control Language="C#" AutoEventWireup="false"
 Inherits="BPLogix.WorkflowDirector.SDK.bpFormASCX" %>
<script runat="server">
 public override void Process_Script(string pParm)

{
bp.log0("Called Process script:" + pParm);

 }
</script>

This function is immediately available to all processes as soon as the file is saved.
You may also use System Variables in the Script Step parameter field to extend the
capabilities of the process script.
This method will be called with the following environment:

LOCAL VARIABLE DESCRIPTION

CurrentWorkflow The current Workflow object (deprecated)
CurrentWorkflowStep The current WorkflowStep object (deprecated)
CurrentForm Optional Form instance object of the process

form
CurrentPartition Instance of the current Partition object

Developer's Reference Guide | 21

Process Timelines.htm
Process Timelines.htm

BP Logix Inc
Process Director Documentation

LOCAL VARIABLE DESCRIPTION

CurrentProject Optional instance of the current Project object
CurrentProjectActivity Optional instance of the current ProjectActivity

object
bp The bp environment

Debugging Process Scripts
To test your custom script, run the process that contains the Script task that calls
your function. When that step in the process is run, any error will cause the step to
remain running and never complete. View this step using the Timeline/Ad-
ministration tab of the Timeline instance.
If any errors are encountered running the script, the step will stop with and have
the status set to Error. The status field of the step will show the exact error (e.g. a
compile error for the script). Correct any errors in your custom script and then
right click the Timeline Activity in the Timeline/Administration tab of the Timeline
instance, and select Restart Activity. When your script runs successfully the activity
will complete and transition to the next step in the process.
You can also debug a process script using the logging functions, like bp.log0 and
bp.log1.

Process Script Handlers
This section documents how to write custom script handlers for Process Director
which are called prior to each process step starting, when an error is encountered,
and when the process step ends. Process Timelines have similar script events that
can be incorporated into the process script. You can configure a single script file in
the process definition by using the Advanced Options tab of the Settings.
Scripted behavior can be added to the beginning or end of any Process Timeline
Activity. The script events Timeline_StartActivity and Timeline_StopActiv-
ity events are used for Timelines. The Timeline_StartActivity event is called
prior to the start of each Timeline Activity. Similarly, the Timeline_StopActivity
event IS called when each Timeline Activity ends.
Using a Specific Process Script File
To write a custom script for a process, create a script file with “.ASCX” as the file
extension on your local hard drive. Add your custom script code and then upload

22 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

the file to the Process Director database using the Create New menu item in the
Content List (select Document/File in the dropdown). Browse to the location of
your ASCX file and upload the file to Process Director. This file will be displayed in
the Content List on the server. To make changes to this script file, you must check
out the file first, update it, and then upload the new version. For information about
modifying files and documents on Process Director, refer to the Implementers
Reference Guide. This script for a process is configured in the Properties page of
the process definition. The script must exist in the Process Director database and it
will be called when a Script task is run in the process. For more information on con-
figuring process definition properties refer to Workflow and Timeline chapters in
the Implementers Reference Guide.
Writing the Script Handler
Your function in the script file would look as follows:

<%@ Control Language="C#" AutoEventWireup="false"
 Inherits="BPLogix.WorkflowDirector.SDK.bpFormASCX" %>
<%@ Import Namespace="System.Collections.Generic" %>
<script runat="server">
 // these functions are used for Timeline activities
 public override void Timeline_Script(string pParm)

{
bp.log0 ("Timeline_Script: " + pParm);

 }
 public override void Timeline_PreActivity(List<Pro-
cessUser> pUsers)

{
bp.log0 ("Timeline_PreActivity");

 }
 public override void Timeline_StartActivity()

{
bp.log0 ("Timeline_StartActivity");

 }
 public override void Timeline_StopActivity()

{
bp.log0 ("Timeline_StopActivity");

 }
 public override void Timeline_Check()

{
bp.log0 ("Timeline_Check");

 }
</script>

These functions are immediately available to all processes as soon as the file is
uploaded to the Content List.

Developer's Reference Guide | 23

BP Logix Inc
Process Director Documentation

Timeline_StartActivity will be called at the beginning of every step in the pro-
cess, even if the step has no users. It is called before Timeline_PreActivity.
Timeline_PreActivity will be called prior to every step in this process starting.
The list of users which will be assigned to the CurrentProjectActivity is
passed in the pUsers parameter. You can add to, remove, or replace users in this
list. Timeline_PreActivity is only called for user steps.
Timeline_StopActivity is called prior to a step’s completion or termination.
Timeline_Check()enables you to check for advancing and due date/timer pro-
cessing, and can be useful to implement custom timer processing. These are
optional overrides that can be defined in the script associated with the Process
Timeline.
When a custom timeline script alters the state of a process, it will be invoked imme-
diately after the script runs, so that changes made to the process state are imme-
diately reflected to the user.

PROCESSUSER PROPERTIES DESCRIPTION

UID The UID of the user who will be assigned to
this step

SUID Optional STEP USER ID that is starting this
user, could be a group step user record

AdminUID Optional, used to set the UID of the person
adding the user to this step

AdminComment Optional, used to set the comment from the
person adding the user to this step

This method will be called with the following environment:

LOCAL VARIABLE DESCRIPTION

CurrentWorkflow The current Workflow object (Deprecated)
CurrentWorkflowStep The current WorkflowStep object (Deprecated)
CurrentForm Optional Form instance object of the process

form
CurrentPartition Instance of the current Partition object

24 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

LOCAL VARIABLE DESCRIPTION

CurrentProject Optional instance of the current Project object
CurrentProjectActivity Optional instance of the current ProjectActivity

object
bp The bp environment

Knowledge View Scripts
This section provides a reference for writing custom Knowledge View scripts for
Process Director. The Knowledge View supports a custom script that can be called
before the results are displayed to the user. The custom scripts are stored in the
Process Director database in the Content List. The custom script is used to inspect,
modify, calculate, or remove results from the Knowledge View.
To develop Knowledge View Scripts inside Visual Studio, use the fully functional
Visual Studio project installed with the product named bpVS.zip. Refer to the
sample file kview_script.ascx.
Writing a Knowledge View Script Function
A Knowledge View can have a custom script that can alter the results of the dis-
played information.
When the Knowledge View runs, it will call this method in the script for EVERY row
in the result:

public override bool KV_Display(List<NameValueEx> pColumns,
 ContentObject pObject,
 out bool pRemoveRow)

If you set the pRemoveRow to true, then the row being processed will be excluded
from the report.
The example below will add the HTML “bold” tag around the value for the Amount
columns.

<%@ Control Language="C#" AutoEventWireup="false"
 Inherits="BPLogix.WorkflowDirector.SDK.bpScript" %>
<%@ Import Namespace="System.Collections.Generic" %>
<%@ Import Namespace="BPLogix.WorkflowDirector.SDK" %>
<script runat="server">
 public override bool KV_Display(List<NameValueEx>

Developer's Reference Guide | 25

BP Logix Inc
Process Director Documentation

pColumns,
 ContentObject pObject,
 out bool pRemoveRow)

{
pRemoveRow = false;// Do not remove the row being pro-

cessed
 foreach (var entry in pColumns)

{
 // Bold the Amount column
 if (entry.Name == "Amount")

{
entry.Value = "" + entry.Value + "";

 }
 }
 return true;// Return true if a value has changed
}
</script>

Notice that Knowledge View scripts inherit from BPLo-
gix.WorkflowDirector.SDK.bpScript.
This method will be called with the following environment:

LOCAL VARIABLE DESCRIPTION

CurrentUser Optional instance of the current User object
CurrentPartition Instance of the current Partition object
bp The bp environment

NameValueEx List Object
Note that the Knowledge View script uses the NameValueEx list object to store the
values in each of the Knowledge View columns. The Value attribute of the
NameValueEx list is always a string, but, of course, the value may be derived from
a non-string object. Let's say that a value we wish to find comes from a checkbox.
In that case, we would see the Value of the checkbox represented by the string val-
ues "True" or "False". If the Value contains a string representation of a number, on
which you'd like to do some math, you can use the built-in Process Director con-
version methods to convert the Value string to an appropriate numeric value.
In addition to the Value attribute, however, the NameValueEx list class also has a
ValueEx attribute that contains the actual .NET DataItem object for the field, or a
decminal number.
The NameValueEx object constructor has four overloads:

26 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

//Null values
public NameValueEx()

//String Name and Value
public NameValueEx(string pName, string pValue)

//String Name and Value, and Decimal Number
public NameValueEx(string pName, string pValue, decimal pNum-
ber)

//String name and Value, and List DataItem
public NameValueEx(string pName, string pValue, DataItem
pDataItem)

Custom ASPX Pages
You can extend the BP Logix web application by providing your own custom .ASPX
pages (typically placed into the /custom folder). These pages can call BP Logix SDK
APIs, or perform any other logic. This page can be used, for example, to perform
scheduled logic using the Windows Scheduler. Or you can write custom pages that
are called from external applications or portals.
See the sample in the /custom/samples/SamplePage.aspx.sample file. Notice that
the page is derived from the BPLogix.WorkflowDirector.SDK.bpCustomPage class.
This class enables you to call any BP Logix SDK API from the new page. Your code
will typically be placed into the Page_Load event.
To create custom ASPX pages inside Visual Studio, use the fully functional Visual
Studio project installed with the product named bpVS.zip. Refer to the sample file
SamplePage.aspx.
A more detailed explanation of creating Custom ASPX Form pages is provided in
the Creating ASP.NET Forms topic.

Creating ASP.NET Forms
This section will describe how to create and manage a Form, how to set the dif-
ferent variables associated with the Form form fields, and how to implement your
custom scripting. You'll notice some differences from previous versions, such as no
more Form page refresh. Forms now utilize AJAX which eliminates the page refresh
when using events. Please keep in mind; this is for Form development using
ASP.Net. We won't be using the Form builder for this section.

Developer's Reference Guide | 27

BP Logix Inc
Process Director Documentation

For more information about the Form and its properties please refer to the Imple-
menters Reference Guide.

Adding a New Form Definition
Process Director can create new Forms as ASCX controls for you. Simply select
Form Definition from the Create New dropdown menu to open the Create Form
screen.

You have three options to create the ASCX control Form from the Create Form
screen. You'll find the options in the dropdown at the top of the Create Form
screen.

28 | Developer's Reference Guide

Implementers Reference.htm
Implementers Reference.htm

BP Logix Inc
Process Director Documentation

The three relevant options from which to choose are Upload Selected Form, Use
Empty .ASCX Form, and Use Template .ASCX Form, all of which are discussed below.

Option 1: Upload Selected Form
To create a new Form definition, you'll have to create an .ascx page using your
development tool. There is one line of code that must be included before you
upload your new page. Please copy and paste the following in the first line of your
page:

<%@ Control Language="C#" AutoEventWireup="false" Inher-
its="BPLogix.WorkflowDirector.SDK.bpFormASCX"%>

Once you've created your Form, you can upload it by selecting Form Definition
from the Create New menu. You'll be presented with a page to browse and select
your form file. You'll also have the option to provide a Name and Description for
the Form definition.

Option 2: Use Empty .ASCX Form
If you use this option, Process Director will create an ASCX control that contains
only basic code required for the control. The basic code consists only of the doc-
ument declaration at the top of the page, and a <script> tag that contains the stubs
for the common Process Director scripting methods.
Once you've created the control, you can Check Out the Form from the Edit tab of
the Form definition, and begin working on it in your development environment.

Developer's Reference Guide | 29

BP Logix Inc
Process Director Documentation

Option 3: Use Template .ASCX Form
If you use this option, Process Director will create an ASCX control that contains a
sample Form with some controls, formatting styles, and other HTML content, in
addition to the page declaration and script stubs.
Again, you can edit this form in your development environment after checking out
the form from the Edit tab of the Form definition.

30 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Editing an ASP.NET Form #
ASP.NET Forms can, once created, be edited by navigating to the Edit tab of the
Form definition.

Check out the ASCX form by clicking the Check Out button. Doing so will check out
the form for editing and give you access to the editing features of the form defin-
ition.

Developer's Reference Guide | 31

BP Logix Inc
Process Director Documentation

To edit the form in Visual Studio, you can download it by clicking the Download
Form button to download the form to your local computer. You can also stop the
editing process at any time, and revert to the currently saved version of the form
by clicking the Cancel Check Out button.
Once you're done editing the form, you can provide the appropriate text for the
Check In Description, then click the Browse button to find the editied version of the
form on your local computer and select it for upload. Once you've done so, click
the Upload New Version button to upload and check in the edited form, which will
replace the existing form with the newly edited version.

Developing a Form in the .NET environment
There are two ways to develop Forms within Process Director. The first uses the
Online Form Designer that's documented in the Implementers Reference. The
other approach is to develop native ASP.NET forms, which is described here.
To develop Forms inside Visual Studio, use the fully functional Visual Studio project
installed with the product named bpVS.zip. Refer to the sample files eform_*.aspx.
This section will provide you the basics of developing your Form in Visual Studio
2008. Developing in this environment requires the knowledge to program in
ASP.NET. You'll be able to use ASP.NET controls as well as extended controls cre-
ated by BP Logix.

32 | Developer's Reference Guide

Form Online Builder.htm

BP Logix Inc
Process Director Documentation

When creating a Form for Process Director, you are actually creating a custom con-
trol (.ascx). You create your Form just as if you were creating in the ..ASPX page.
Below you'll see the basic structure of the Form.

<%@ Control Language="C#" AutoEventWireup="true" Inher-
its="BPLogix.WorkflowDirector.SDK.bpFormASCX"%>
<script runat="server">
// Add any events here that will be called as part of the Form
// life-cycle
// See the Custom Scripting / Form Scripts section for more
information
</script>

Include Files
This enables common functions to be called from other script files. To include a file
in your Form use the following syntax:

<!--#include file="~/Custom/MyScripts/script.ascx"-->

The .ascx must exist on the server file system and isn't controlled by Process Dir-
ector (via the Content List). A good location for an include file is the /custom/
folder in the Process Director web site installation directory.

Using a .DLL file with Your Scripts
This is an approach to call code from custom scripts. Developers can make a “nor-
mal” .NET .dll and place it into the \Program Files\BP Logix\Process Dir-
ector\website\bin folder on the server. Then they can reference the classes in that
.dll through any script code in the Process Director application. You can use the
GAC, but it is easier to use the bin folder (assuming the code wouldn't be used
“outside” of the Process Director environment). DLLs in this folder are accessible
only to the Process Director application.
In your module placing the public classes into a namespace, such as:

namespace companyname.custom
{
 public class MyClass()

{
// … your methods, properties, etc

 public static void MyFunc()
{

 }

Developer's Reference Guide | 33

BP Logix Inc
Process Director Documentation

 }
}

Then inside a form script call this function using:

companyname.custom.MyClass.MyFunc();

Form Controls
This section outlines the various Process Director controls that can be placed onto
Forms. These controls are used to create and enhance Forms in addition to “nor-
mal” ASP.NET controls (such as TextBox, DropDownList, etc). The properties can be
set in the actual <bpx> control tag, or can be set via normal C# properties.

AddRow
This Form control will create a button a user can click to add row(s) to an array.
Properties

PROPERTY NAME DESCRIPTION DEFAULT VALUE

ArrayName The name of the array this button
is attached to.

At The location to add the new row
(s).

0 (end of array).

ConfirmText Pops up a confirmation box when
a user clicks the button with the
specified text, allowing a user to
cancel or confirm the action which
the button will take.

ImageURL Sets an optional image for the but-
ton.

OnClientClick Used to execute client- side
JavaScript or call client JavaScript
functions. To prevent the button
from causing a Post-back, place a
return false; at the end of the
JavaScript string.

34 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

PROPERTY NAME DESCRIPTION DEFAULT VALUE

Rows The number of Rows to add. 1

Text Sets the optional button text.

Example

<bpx:AddRow runat="server" ArrayName="MyArray"/>

Array
This Form control places a repeating template section on a Form. To default the
array to a number of rows simply go to the Form properties page and click on the
edit link next to the array control that is in the list of controls. Select Valueà Num-
ber from the Default Value dropdown and enter the number to default the number
of rows to.
Properties
None
Example

<table>
 <tbody>
 <tr>
 <th>City</th>
 <th>State</th>
 </tr>
 <bpx:Array ID="ArrayTest" runat="server">
 <ItemTemplate>
 <tr>
 <td><bpx:bpTextBox ID="Text1" runat="server"
/></td>
 <td><bpx:bpTextBox ID="Text2" runat="server"
/></td>
 </tr>
 </ItemTemplate>
 </bpx:Array>
 </tbody>
</table>

ArrayRemoveRow
This Form control will create a button a user can click to remove a specific row
from an array. You should place this control directly in an array, so that the button

Developer's Reference Guide | 35

BP Logix Inc
Process Director Documentation

is displayed on each row.
Properties

PROPERTY NAME DESCRIPTION

ConfirmText Pops up a confirmation box when a user clicks the button
with the specified text, allowing a user to cancel or con-
firm the action which the button will take.

ImageURL Sets an optional image for the button.

OnClientClick Used to execute client- side JavaScript or call client
JavaScript functions. To prevent the button from causing a
Post-back, place a return false; at the end of the JavaScript
string.

Text Sets the optional button text.

Example

<bpx:ArrayRemoveRow runat="server"/>

ArrayMoveUp
This Form control will create a button a user can click to move a Row up in the
array.
Properties

PROPERTY NAME DESCRIPTION

ConfirmText Pops up a confirmation box when a user clicks the button
with the specified text, allowing a user to cancel or con-
firm the action which the button will take.

ImageURL Sets an optional image for the button.

OnClientClick Used to execute client- side JavaScript or call client
JavaScript functions. To prevent the button from causing a
Post-back, place a return false; at the end of the JavaScript
string.

Text Sets the optional button text.

36 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

<bpx:ArrayMoveUp runat="server"/>

ArrayMoveDown
This Form control will create a button a user can click to move a Row down in the
array.
Properties

PROPERTY NAME DESCRIPTION

ConfirmText Pops up a confirmation box when a user clicks the button
with the specified text, allowing a user to cancel or con-
firm the action which the button will take.

ImageURL Sets an optional image for the button.

OnClientClick Used to execute client- side JavaScript or call client
JavaScript functions. To prevent the button from causing a
Post-back, place a return false; at the end of the JavaScript
string.

Text Sets the optional button text.

Example

<bpx:ArrayMoveDown runat="server"/>

Attach
This Form control will display a button to allow the user to attach files to the form.
Properties

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION DEFAULT VALUE

AttachType Form
Workflow
Timeline
Process

Attach object
(s) directly to
Form,
Attach object
(s) to the cur-

Process

Developer's Reference Guide | 37

BP Logix Inc
Process Director Documentation

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION DEFAULT VALUE

rent Workflow
instance as a
Workflow ref-
erence.
Attach object
(s) to the cur-
rent timeline
instance as a
Timeline ref-
erence.
Attach object
(s) to the cur-
rent Workflow
or timeline
instance.

ClipboardImageName The optional
name to use
for the
attached
images. This
parameter can
use SysVars to
make the
name
dynamic. If the
items on the
clipboard are
files, the actual
file name will
be used as the
new attach-

38 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION DEFAULT VALUE

ment name.

ConfirmText Pops up a con-
firmation box
when a user
clicks the but-
ton with the
specified text,
allowing a user
to cancel or
confirm the
action which
the button will
take.

GroupName Optional name
of the group to
place the
attachment (s)
into.

ImageURL Sets an
optional image
for the button.

ObjectType Document
Clipboard

Allow user to
upload doc-
ument
Allow the user
to use an item
from the clip-
board

Document

OnClientClick Used to
execute client-

Developer's Reference Guide | 39

BP Logix Inc
Process Director Documentation

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION DEFAULT VALUE

side JavaScript
or call client
JavaScript func-
tions. To pre-
vent the
button from
causing a Post-
back, place a
return false; at
the end of the
JavaScript
string.

SingleFileUpload When set to
"true",
restricts the
upload to a
single file.

false

Text Sets the
optional but-
ton text.

Example

<bpx:Attach ID="ControlName" runat="server"
GroupName="Group"/>

AttachKview
This control enables the user to attach an object to a Form instance by browsing
for the object using a Knowledge View.
Properties

PROPERTY NAME DESCRIPTION

AttachToParent=[1|0] If set to 1, this object will be attached to the

40 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

PROPERTY NAME DESCRIPTION

parent of this Form instance

AttachType Form – attach object(s) directly to Form
Workflow - attach object (s) to the current
Workflow instance as a Workflow reference
Process Timeline - attach object(s) to the cur-
rent Process Timeline instance as an Process
Timeline reference
Process - attach object(s) to the current Work-
flow or Process Timeline instance

CopyObject=[1|0] If set to 1, this object will be copied to the new
location (leaving the old object alone)

GroupName Only display objects from the specified group

MoveObject=[1|0] If set to 1, this object will be moved to a new
location (removing the object in its old loc-
ation)

QS A querystring to send data to the Knowledge
View

Text Text displayed on the Form button

Example

{AttachKVIew:ControlName, AttachType=Form, GroupName=Group,
 Text=Text to Display, MoveObject=0}

AttributePicker
This Form control will create a picker control to allow users to pick meta data attrib-
utes.
Properties

PROPERTY NAME DESCRIPTION

StartingCategory Sets the category from which to show the initial attrib-
utes.

Text Sets the optional button text.

Developer's Reference Guide | 41

BP Logix Inc
Process Director Documentation

Example

<bpx:AttributePicker runat="server"/>

bpButton
This Form control is used to place a button on a Form. The button will typically be
used when hooking up to a Custom Task, or when writing custom C#.
Properties

PROPERTY NAME DESCRIPTION

ConfirmText Pops up a confirmation box when a user clicks the button
with the specified text, allowing a user to cancel or con-
firm the action which the button will take.

OnClientClick Used to execute client- side JavaScript or call client
JavaScript functions. To prevent the button from causing a
Post-back, place a return false; at the end of the JavaScript
string.

StartingCategory Sets an optional image for the button.

Text Sets the optional button text.

Example
This example will cause a Post-back to the server to process the event.

<bpx:bpButton ID="ControlName" Text="Text to Display" run-
at="server" />

This example will execute client JavaScript, and prevent a Post-back.

<bpx:bpButton ID="ControlName" Text="Text to Display"
 OnClientClick="MyFunc();return false;" runat="server" />

bpCheckBox
This Form control places a two-state (checked - true/unchecked - false) checkbox
on the Form. Useful for yes/no data and enabling/disabling sections on a Form.

42 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Properties

PROPERTY NAME DESCRIPTION

CssClass To set the CSS class name for this control.

Text (optional) Accompanying label text for the check box

Example

<bpx:bpCheckBox ID="ControlName" runat="server" Text="Text to
Display" />

bpImage
This Form control places a configurable image control on the Form. The ImageURL
property is required, but all other properties are optional.
Properties

PROPERTY NAME DESCRIPTION

ImageURL The fully qualified URL of the source image's location.

Height Height of the image in pixels/percent.

Width Width of the image in pixels/percent.

URL The fully qualified URL of an asset to display when the
image is clicked, i.e., to make the image a hyperlink.

Target The hyperlink target type, e.g. "_blank" for the image
hyperlink.

Style Any CSS styles to apply to the image

CssClass To set the CSS class name for this control.

Alt The alt text for the image.

Example

<bpx:bpImage ImageURL="imgURL" Height="XX" Width="XXX"
URL="HyperlinkTargetURL" Target="HyperlinkTarget"
 Style="CSSStyles" CssClass="ClassName" Alt="Alt Image
Text" />

bpLabel

Developer's Reference Guide | 43

BP Logix Inc
Process Director Documentation

This Form control will simply display Text. This can be used, for instance, when
you'd like to conditionally show text. You can associate rules with this control to
affect the visibility. You'll use C# to get/set the actual Text contents.
Properties

PROPERTY NAME DESCRIPTION

CssClass To set the CSS class name for this control.

Example

<bpx:bpLabel runat="server" ID="ControlName"/>

bpString
This Form control will display Text from a localized resource file. You can create cus-
tom localized strings in the strings.resx files to easily display strings in different lan-
guages on forms. You can associate rules with this control to affect the visibility.
Properties

PROPERTY NAME DESCRIPTION DEFAULT VALUE

CssClass To set the CSS class name for this
control.

DefaultString String display while editing form
definition in Design mode using
VS plugin

ResourceID Name of resource in strings.resx
or resource.resx

ResourceType Does string exist in strings.resx
(Custom) or resource.resx
(Internal)

Custom

Example

<bpx:bpString runat="server" DefaultString="StringValue"
 ResourceID="ResIDString" />

bpTextBox
This Form control puts a space for a user to enter text on a Form.

44 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Properties

PROPERTY NAME DESCRIPTION

Columns To set the number of columns the control will use.

CssClass To set the CSS class name for this control.

Rows To set the number of rows the control will use.

TextMode SingleLine, Multiline, or Password

Example
This example will cause a Post-back to the server

<bpx:bpTextBox ID="ControlName" runat="server" Columns="NN"/>

ButtonArea
This Form control is used to control where the complete buttons for the Form are
placed. Complete buttons are buttons such as OK, Cancel, Approve, Reject etc. The
actual buttons that are placed in this area are dependent on the current Timeline
Activity, if any. If this control isn't present on a Form, then the buttons are added
to the bottom of the form.
Properties

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION DEFAULT VALUE

CancelConfirmText Pops up a con-
firmation box
when a user
clicks the
Cancel button
with the spe-
cified text,
allowing a user
to return to
the form or
cancelling out
of the form.

Developer's Reference Guide | 45

BP Logix Inc
Process Director Documentation

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION DEFAULT VALUE

CancelImageURL Optional path
to the image
used for the
Cancel button
on a Form

CancelShow True
False

Enables the
form to show
or hide the
Cancel button.

True

CancelText Sets the text
for the Cancel
button

Cancel

CompleteConfirmText Pops up a con-
firmation box
when a user
clicks the Com-
plete button
with the spe-
cified text,
allowing a user
to cancel the
Complete or
continue to
submit the
form.

CompleteShow True
False

Enables the
form to show
or hide the
Complete but-
ton.

True

46 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION DEFAULT VALUE

OKConfirmText Pops up a con-
firmation box
when a user
clicks the OK
button with
the specified
text, allowing a
user to cancel
the OK or con-
tinue sub-
mitting the
form.

OKImageURL Optional path
to the image
used for the
OK button on a
Form

OKShow True
False

Enables the
form to show
or hide the OK
button.

True

OKText Sets the text
for the OK but-
ton

OK

Example
This example controls the location of the complete buttons, and changes the
default text of the OK and Cancel buttons.

<bpx:ButtonArea runat="server" OKText="OK Text"
 CancelText="Cancel Text"/>

Calculate

Developer's Reference Guide | 47

BP Logix Inc
Process Director Documentation

This Form control calculates an expression and places the result as text on a Form.
Properties

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION

FormatString (optional) The format in which to
display the result of the Formula
(Defaults to " {0:0.00}") - See
Microsoft's documentation on
string formatting

Formula Expression to calculate a numer-
ical value (can accept System Vari-
ables)

Example

<bpx:Calculate ID="ControlName" runat="server"
 Formula="{#FORM:Field1} * {#FORM:Field2}"
 FormatString="{0:0.0}" />

Cancel
This Form control will place a button on a Form which will cancel or delete the cur-
rent Form or Process Timeline.
Properties

PROPERTY NAME DESCRIPTION

CancelProject This enables you to cancel the associated
timeline.

CancelWorkflow This enables you to cancel the associated
Workflow.

ConfirmText Pops up a confirmation box when a user clicks
the button with the specified text, allowing a
user to cancel or confirm the action which the
button will take.

DeleteForm This enables you to delete the form.

48 | Developer's Reference Guide

https://learn.microsoft.com/en-us/dotnet/api/system.string.format?view=net-8.0

BP Logix Inc
Process Director Documentation

PROPERTY NAME DESCRIPTION

DeleteProject This enables you to delete the timeline.

DeleteWorkflow This enables you to delete the Workflow.

ImageURL Sets an optional image for the button.

Text Sets the optional button text.

Examples
To cancel associated Process Timeline:

<bpx:Cancel runat="server" CancelProject ="true"
 Text="Text to Display">
</bpx:Cancel>

To just delete this form:

<bpx:Cancel runat="server" DeleteForm="true"
 Text="Text to Display">
</bpx:Cancel>

To delete the Process Timeline and Form:

<bpx:Cancel runat="server" DeleteProject ="true"
 DeleteForm="true" Text="Text to Display">
</bpx:Cancel>

CategoryPicker
This Form control will create a picker control to allow users to pick meta data cat-
egories.
Properties

PROPERTY NAME DESCRIPTION DEFAULT VALUE

Multiple Enables you to select multiple cat-
egories from the picker.

"false"

StartingCategory Sets the initial category to display.

Text Sets the optional button text.

Example

<bpx:CategoryPicker runat="server"/>

Developer's Reference Guide | 49

BP Logix Inc
Process Director Documentation

CommentLog
This Form control enables a user to place a Comment Log on a Form.
Properties

PROPERTY NAME DESCRIPTION DEFAULT VALUE

Columns (Optional) The number of columns
to display while prompting for a
comment

70

ControlName (Optional) The name of the com-
ment log section. Use this prop-
erty if you have multiple comment
logs on a Form

Rows (Optional) The number of rows to
display while prompting for a com-
ment

4

Text (Optional) The text for the button
used to add a comment

Add Comment

Width (Optional) Width of the displayed
comments

100%

Example

<bpx:CommentLog runat="server" ControlName=”ControlName”
Width="50%"/>

ContentPicker
This Form control enables a user to choose an object in the content list.
Properties

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION DEFAULT VALUE

DocExtension (Optional) Lim-
its the user to
choose only

50 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION DEFAULT VALUE

documents of
the specified
extension (Type
of "Document"
only)

StartingFolder (Optional) The
path to a
folder, limiting
a user to
choose only
objects in that
folder and its
subfolders

Type (Optional) The
type of object
(Folder, Con-
tentObject,
Script, etc.) to
pick.

Folder

Example

<bpx:ContentPicker ID="ControName" runat="server"
 Type="Document" DocExtension="pdf" />

ControlPicker
This Form control will display a dropdown of all controls on this page.
Properties

PROPERTY NAME PROPERTY ATTRIBUTES DESCRIPTION

ControlType Input, Textarea, Date, But-
ton, Dropdown, Password,
Array, Section, Radio,

Limits the type of control to
show in the dropdown.

Developer's Reference Guide | 51

BP Logix Inc
Process Director Documentation

PROPERTY NAME PROPERTY ATTRIBUTES DESCRIPTION

CheckBox, Custom, Cus-
tomTaskConfigSection, Cus-
tomTaskRunSection,
UserPicker, GroupPicker,
Attach, ShowAttach, Label.

DropdownPrompt Optional text to show on the
dropdown if no user is selec-
ted

Style To set the style (using any
CSS style).

Example

<bpx:ControlPicker ID="ControlName"
 DropdownPrompt="Prompt Text"
 runat="server" />

DatePicker
This Form control is a date picker control.
Properties

PROPERTY NAME DESCRIPTION

BlockControl If set to true, will surround the control within an HTML
block element.

Style To set the style (using any CSS style).

Example

<bpx:DatePicker ID="ControlName" runat="server"/>

DateTimePicker
This Form control is a date/time combination picker control.

52 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Properties

PROPERTY NAME DESCRIPTION

EndTime (Optional) Sets the maximum time (of day) for the pre-
selected picker values. Must exceed the StartTime value.

Interval (Optional) The amount of time (in minutes) between pre-
selected picker values.

StartTime (Optional) Sets the beginning time (of day) for the pre-
selected values available for the picker.

Example

<bpx:DateTimePicker ID="ControlName" runat="server" />

DateDiff
This Form control is used to calculate the difference between 2 dates.
Properties

PROPERTY NAME DESCRIPTION DEFAULT VALUE

Date1 The first date or date / time

Date2 The second date or date / time

Type (Optional) The type of the dif-
ference
Years
Months
Days
BusinessDays
Hours
BusinessHours
Minutes
Seconds

Days

Developer's Reference Guide | 53

BP Logix Inc
Process Director Documentation

Example

<bpx:DateDiff ID="ControlName" Date1="1/1/2000" Date2="
{form:my_date2}"
 runat="server"/>

DBConnectorPicker
This Form control will display a Database Connector Picker on the form.
Properties

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION

DropdownPrompt Optional text to show on the drop-
down if no connector is selected

Example

<bpx:DBConnectorPicker ID="ControlName" DropdownPrompt="Prompt
Text"
 runat="server" />

DropDown
This Form control puts a dropdown control on the form.
Properties

PROPERTY NAME DESCRIPTION

CssClass To set the CSS class name for this control.

Mode Used to turn on type-ahead functionality for controls that
use Business Values as their data source, by setting the
mode to "AutoComplete", e.g. Mode="AutoComplete".
With the type-ahead functionality implemented on the
control tag, you can link to the Business Value data on the
Form definition by:

1. Setting the Dropdown control as an Event Control
2. Mapping the Set Form Data entries to run on the
Form Field Event for that Control.

54 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example
Dropdown with input items manually configured.

<bpx:DropDown ID="ControlName" runat="server" >
 <asp:ListItem Text="DisplayText1" Value="Value1" />
 <asp:ListItem Text="DisplayText2" Value="Value2" />
</bpx:DropDown>

Dropdown configured for use as a type-ahead dropdown for use with a Business
Value.

<bpx:DropDown ID="ControlName" Mode="AutoComplete" run-
at="server" ></bpx:DropDown>

FormErrorStrings
This Form control is used to identify the area(s) where error messages are dis-
played on the Form. If this control isn't present on a Form, then the error mes-
sages are placed at the top and bottom of the form.
Properties
None
Example

<bpx:FormErrorStrings runat="server"/>

FormInfoStrings
This Form control is used to identify the area(s) where informational messages are
displayed on the Form. If this control isn't present on a Form, then the inform-
ational messages are placed at the top and bottom of the form.
Properties
None
Example

<bpx:FormInfoStrings runat="server"/>

GroupPicker
This Form control will display a Group Picker on the form.

Developer's Reference Guide | 55

BP Logix Inc
Process Director Documentation

Properties

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION

DropdownPrompt Optional text to show on the drop-
down if no user is selected

Height For ListBox PickerType only; sets
the height of the ListBox control

Multiple True Allow multiple users to be selec-
ted.

PickerType Dropdown
Popup
ListBox

Dropdown – use a dropdown con-
trol
Popup – use a popup control.
ListBox – use a ListBox control.

Width For ListBox PickerType only; sets
the width of the ListBox control

Example

<bpx:GroupPicker ID="ControlName" DropdownPrompt="Prompt Text"
 PickerType="Popup" runat="server" Multiple="false" />

HTML
This Form control will display an HTML string.
Properties

PROPERTY NAME DESCRIPTION

HTMLString Enables you to use HTML on a Form. You can use multiple
SysVars in this control.

Example

<bpx:HTML ID="ControlName" runat="server"
 HTMLString="click here"/>

IgnoreSection

56 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

This Form control is used to create a group or section of controls and text on a
Form. This section is used to tell the Form processor to ignore the controls inside
this section. This can be used, for example, to surround custom controls so that
the Form processor doesn't attempt to process the internal form fields.
Properties
None
Example

<bpx:IgnoreSection runat="server">
<!--Items in this section are ignored by the Form pro-

cessor-->
</bpx:IgnoreSection>

KView
This Form control is used to place a Knowledge View on the Form. You can use a
button to open a Knowledge View or you can view a Knowledge View inline on the
form.
Properties

PROPERTY NAME DESCRIPTION DEFAULT VALUE

Height Only for iframe – The height of the
iframe.

300px

QS Optional list of QueryString para-
meters to pass to the KView. The
KView can, for example, use these
QueryString parameters in its fil-
ters.
Ensure that you've created a filter
corresponding to each QS filter.
You must use the QueryString
type on the right side in the Know-
ledge View filter.

Text Only for Popup – The text on the
button.

View Knowledge View

Type Iframe – Displays the KView in an Iframe

Developer's Reference Guide | 57

BP Logix Inc
Process Director Documentation

PROPERTY NAME DESCRIPTION DEFAULT VALUE

inline IFRAME on the form.
Popup – A button will be shown on
the form. When clicked, a pop win-
dow showing the KView will be
launched

Width Only for iframe – The width of the
iframe

100%

Example

{KView:ControlName, Text="Text to Display", Type=Popup,
QS="Query String 1",
 QS="Query String 2"}

The syntax for the Form Builder is:

store={form: store}
appname={form: appname}

ListBox
This Form control is used to place a List Box control on a Form, allowing a user to
select more than one entry in the list. This ListBox control can be populated via
Custom Tasks, scripts, or with the asp:ListItem tag. Note that commas in a ListBox
item value aren't valid. For any ListBox item with a comma in the value, the
comma will become a semi-colon upon ListBox creation (this doesn't apply when
programmatically adding items).
Properties

PROPERTY NAME DESCRIPTION

Height (optional) The height of the ListBox control (e.g., 100px,
15ex, 25%, etc.)

Items The collection of items in the ListBox - See ASP ListCon-
trolItems property for usage examples.

SelectedValues A list of selected values in the Items collection

SelectedValuesString A comma-separated string representation of the list of

58 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

PROPERTY NAME DESCRIPTION

selected values in the Items collection

Width (optional) The width of the ListBox control (e.g., 200px,
20em, 30%, etc.)

Example

<bpx:ListBox ID="ControlName" runat="server">
 <asp:ListItem Value="Value1" Text="DisplayText1" />
 <asp:ListItem Value="Value2" Text="DisplayText2" />
 <asp:ListItem Value="Value3" Text="DisplayText3" />
</bpx:ListBox>

Print
This Form control puts a single print button control on the form.
Properties

PROPERTY NAME DESCRIPTION

ConfirmText Pops up a confirmation box when a user clicks the button
with the specified text, allowing a user to cancel or con-
firm the action which the button will take.

ImageURL Sets an optional image for the button.

Style To set the style for this control.

Text Displays the label of the button.

Example

<bpx:Print ID="ControlName" Text="Text to Display" run-
at=”server” />

Radio
This Form control puts a Radio Group control on the form.
Properties

PROPERTY NAME DESCRIPTION

CssClass To set the CSS class name for this control.

Developer's Reference Guide | 59

BP Logix Inc
Process Director Documentation

Example

<bpx:Radio ID="ControlName" runat="server" CssClass="MyClass">
 <asp:ListItem Text="DisplayText1" Value="Value1" />
 <asp:ListItem Text="DisplayText2" Value="Value2" />
</bpx:Radio>

Rating
This Form control puts a Rating control on the Form.
Properties

PROPERTY NAME DESCRIPTION

ItemCount The integer number of stars to display for the rating, up
to a maximum of ten.

Precision Determines whether or not the rating consists of whole
stars or some other increment.

Example

<bpx:Rating runat="server" ID="ControlName" ItemCount="<int>"
Precision="Item|Half|Exact" />

RemoveRow
This Form control will create a button a user can click to remove row(s) to an array.
Properties

PROPERTY NAME DESCRIPTION DEFAULT VALUE

ArrayName The name of the array this button
is attached to.

At The location to remove the new
row(s).

0 (end of array).

ConfirmText Pops up a confirmation box when
a user clicks the button with the
specified text, allowing a user to
cancel or confirm the action which
the button will take.

60 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

PROPERTY NAME DESCRIPTION DEFAULT VALUE

ImageURL Sets an optional image for the but-
ton.

OnClientClick Used to execute client- side
JavaScript or call client JavaScript
functions. To prevent the button
from causing a Post-back, place a
return false; at the end of the
JavaScript string.

Rows The number of Rows to remove. 1

Text Sets the optional button text.

Example

<bpx:RemoveRow runat="server" ArrayName="MyArray"/>

RichText
This Form control places a rich text editor on a Form. This enables a user to enter
text as well as format it and place links and other rich text controls within the Form
control.
Properties

PROPERTY NAME DESCRIPTION

Height (optional) The height of the ListBox control (e.g., 100px)

Width (optional) The width of the ListBox control (e.g., 200px)

Example
This example will cause a Post-back to the server.

<bpx:RichText ID="ControlName" runat="server" Height="NNNpx"
Width="NNNpx" />

RoutingSlip
Display the routing slip for the Process Timeline package on the form.

Developer's Reference Guide | 61

BP Logix Inc
Process Director Documentation

Properties

PROPERTY NAME DESCRIPTION PROPERTY
ATTRIBUTES

DEFAULT VALUE

ActiveActivityOnly Should the
routing slip
only display
the active activ-
ity?

True
False

False

ActiveStepOnly Should the
routing slip
only display
the active
step?

True
False

False

ActivityName An optional
comma- sep-
arated list of
activities to dis-
play the rout-
ing slip in

MostRecentInstance Should the
routing slip dis-
play only the
most recent
step instance?
If this is false,
then the rout-
ing slip will
show the users
every time a
step ran.

True
False

False

ShowCancelled Should routing
slip display
users that

True
False

True

62 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

PROPERTY NAME DESCRIPTION PROPERTY
ATTRIBUTES

DEFAULT VALUE

have been can-
celed?

ShowComments Should Rout-
ing Slip display
the com-
ments?

True
False

True

ShowCompleted Should routing
slip display
users that
have com-
pleted the
step?

True
False

True

ShowCompletedOn Shows the
date the task
was completed
for each par-
ticipant in the
routing slip.

True
False

False

ShowHeader Should Rout-
ing Slip display
the header.

True
False

True

ShowInitiator Should the pro-
cess initiator
be displayed?

True
False

false

ShowParticipants Shows the
name of each
participant.
You can use
this, for
example, to

True
False

True

Developer's Reference Guide | 63

BP Logix Inc
Process Director Documentation

PROPERTY NAME DESCRIPTION PROPERTY
ATTRIBUTES

DEFAULT VALUE

hide the
names of the
participants,
and only show
the signature
image.

ShowPending Should routing
slip display
users that
have not
began?

True
False

False

ShowReassigned Should routing
slip display
users that
have been
reassigned?

True
False

True

ShowResult Shows the Res-
ult column in
the routing
slip.

True
False

True

ShowRunning Should routing
slip display
users currently
running?

True
False

True

ShowSignatures Should routing
slip display
user’s sig-
natures?

True
False

True

ShowStatus Shows the
Status column

True
False

True

64 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

PROPERTY NAME DESCRIPTION PROPERTY
ATTRIBUTES

DEFAULT VALUE

in the routing
slip.

ShowStep Groups the
users in the
routing slip
according to
the step they
ran in.

True
False

True

ShowTimedOut Should routing
slip display
users that
have timed
out?

True
False

True

StepName An optional
comma- sep-
arated list of
steps to dis-
play the rout-
ing slip in.

TimelineName A partial match
for a timeline
definition
name, restrict-
ing the routing
slip to be dis-
played in the
matching
Timelines.

UseDateTime Optionally
shows Date
and Time if

True
False

False

Developer's Reference Guide | 65

BP Logix Inc
Process Director Documentation

PROPERTY NAME DESCRIPTION PROPERTY
ATTRIBUTES

DEFAULT VALUE

true

WorkflowName A partial match
for a Workflow
definition
name, restrict-
ing the routing
slip to be dis-
played in the
matching
Workflows.

Example
This example will show the routing slip for a single step

<bpx:RoutingSlip runat="server" StepName="Step Name"/>

This example will show the routing slip for the active step and only show the active
users.

<bpx:RoutingSlip runat="server" ActiveStepOnly="true"
 ShowRunning="true" ShowCompleted="false"
 ShowCancelled="false" ShowTimedOut="false"/>

Save
The “save” (close=false) will only appear when the user is viewing the form in a pro-
cess task. The “save and close” (close=true) will always appear. The “save and
close” will add an entry to the users task list.
Properties

PROPERTY NAME DESCRIPTION DEFAULT VALUE

Close The Close parameter can be set to
true or false.

True

ConfirmText Pops up a confirmation box when
a user clicks the button with the

66 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

PROPERTY NAME DESCRIPTION DEFAULT VALUE

specified text, allowing a user to
cancel or confirm the action which
the button will take.

ImageURL Sets an optional image for the but-
ton.

Text Sets the optional button text.

Example
This example will cause a Post-back to the server to save the form contents.

<bpx:Save ID="ControlName" runat="server" Text="Text to Dis-
play"
 Close="true"/>

Section
This Form control is used to create a group or section of controls and text on a
Form. This section can be used to apply formatting, required setting, enabling, or
visibility rules to all elements in a section.
Properties

PROPERTY NAME DESCRIPTION DEFAULT VALUE

BodyCssClass To set the CSS class name for the
body of the section.

BodyStyle To set the style (using any CSS
style) for the body of the section.

CanCollapse Set this property to “true” males
this section a collapsible section.

False

CollapseImageURL Optional URL to image to use for
Collapse

Expanded Set to true to have the control
viewed in the Expanded state ini-
tially. Set to false to have the con-
trol viewed collapsed initially.

True

Developer's Reference Guide | 67

BP Logix Inc
Process Director Documentation

PROPERTY NAME DESCRIPTION DEFAULT VALUE

ExpandImageURL Optional URL to image to use for
Expand

HeaderCssClass To set the CSS class name for the
header.

HeaderStyle To set the style (using any CSS
style) for the header.

Text The text for the “header” of the
CollapseSection

WrapperTag The section can optionally be
enclosed with an HTML element
such as a div or span. A div uses
“block” formatting in HTML (so
that the section appears on the
next line), where the span uses
“inline” formatting.

Div

Example
This sample will create a section on a form to collect addresses. The section will be
surrounded with an HTML DIV block.

<bpx:Section runat="server" ID="ControlName">
<!--Some Form controls-->

</bpx:Section>

This sample will create a section that flows “inline” with the surround HTML.

<bpx:Section runat="server" ID="ControlName"
WrapperTag="span">

<!--Some more Form controls and HTML-->
</bpx:Section>

ShowAttach
This Form control will display a table showing the attachments that match the
desired criteria.

68 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Properties

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION DEFAULT VALUE

AttachType Form
Workflow
Project
Process

Attach object
(s) directly to
Form
Attach object
(s) to the cur-
rent Workflow
instance as an
Workflow ref-
erence
Attach object
(s) to the cur-
rent timeline
instance
Attach object
(s) to the cur-
rent Workflow
or timeline
instance

Process

GroupName Optional filter
of the group
that attach-
ments must
belong to.

NameAsView True
False

Enables the
attachment
name to be a
hot link. Same
fucntionality as
the ShowView
property.

False

Developer's Reference Guide | 69

BP Logix Inc
Process Director Documentation

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION DEFAULT VALUE

ObjectType Document
Form
NotSet

Only shows
documents.
Only shows
form instances
Shows all
types of
objects

NotSet

ShowDate True
False

Show the date
for each attach-
ment?

True

ShowDownload True
False

Show the
Download link
for each doc-
ument attach-
ment?

True

ShowEdit True
False

Show the Edit
link for each
document
attachment?

False

ShowRemove True
False

Show the
Remove link
for each attach-
ment?

True

ShowUser True
False

Show the user
for each attach-
ment?

True

ShowView True
False

Show the View
link for each
attachment?

True

Text Sets the

70 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION DEFAULT VALUE

optional text
to display
above attach-
ments.

ViewInline True
False

Enables the
user to select a
document to
view inline on
the Form in an
IFRAME.

False

ViewInlineHeight Optional para-
meter to set
the height of
the IFRAME for
the selected
document. Use
any HTML com-
patible string
such as 300px.

200px

Example

<bpx:ShowAttach ID="ControlName" runat="server"
GroupName="Group"/>

ShowAttachKView
This Form control will add an Iframe to the Form showing a Knowledge View of
attached objects.
Properties

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION DEFAULT VALUE

AttachType Form show object(s) Process

Developer's Reference Guide | 71

BP Logix Inc
Process Director Documentation

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION DEFAULT VALUE

Workflow
Process Timeline
Process

attached to
Form
show object(s)
attached to the
current Work-
flow instance
as a Workflow
reference
show object(s)
attached to the
current Pro-
cess Timeline
instance as a
Process
Timeline ref-
erence
show object(s)
attached to the
current Work-
flow or Pro-
cess Timeline
instance

GroupName Specifies to
which group
objects shown
on the Know-
ledge View
should be
restricted.

Height Height of the
Iframe in

72 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION DEFAULT VALUE

pixels.

ShowParents If set the 1, the
Knowledge
View will show
the parents of
the object.

Null (parent isn't
shown)

Width Width of the
Iframe in
pixels.

Example

<bpx:ShowAttachKView ID="ControlName", Height="NNN",
Width="NNN" />

ShowReport
This Form control will add a viewer to a Form to display a Report object in the
Form.
Properties

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION

Height The height, in pixels, of the
Report's display on the Form.

ID The Control's ID.

ImageOnly Boolean Display an image only for the
Report

ImageURL The IRL of an image to display for
the Report.

QS The query string to use for the
report's parameters, if any.

Developer's Reference Guide | 73

BP Logix Inc
Process Director Documentation

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION

RID The Report's ID.

SmallImage Boolean Display the image in a small
format.

Text Text to display as the Report's
Title.

Type IFrame
Popup
Image
HTML

The display type for the control to
display on the form.

Width The Width, in pixels, of the
Report's display on the Form.

Example

<bpx:ShowReport ID="ControlName" runat="server" RID="ReportID"
Height="NNN" Width="NNN"
 Text="Text to Display" ImageURL="ImgURL" ImageOnly="true"
SmallImage="True" Type="IFrame"

QS="Query String">
</bpx:ShowReport>

SignatureComments
This Form control will display a textbox on the form to enter Workflow comments.
Properties

PROPERTY NAME DESCRIPTION DEFAULT VALUE

Columns Sets the width of the textbox. 70

Rows Sets the height of the textbox. 4

Style To set the style for this control.

Text Sets the optional default text in
the textbox.

74 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

<bpx:SignatureComments id="ControlName" runat="server"
 Text="Text to Display"/>

Slider
This Form control will display Slider control on the Form to set a value between 0
and 100.
Properties

PROPERTY NAME DESCRIPTION DEFAULT VALUE

TrackPosition The visual position of the track
indicator.

BottomRight

Height Sets the height of the control.
(Optional)

Width Sets the width of the control.
(Optional)

ShowDecreaseHandler Displays the icon to decrease the
slider value. (Optional)

True

ShowIncreaseHandle Displays the icon to increase the
slider value. (Optional)

True

WrapperTag The outer HTML tag, e.g. "DIV" to
use as a container for the control,
if any. (Optional)

Alt The Alt Text to use for access-
ibility.

Example

<bpx:Slider runat="server" TrackPosition="Bot-
tomRight|Center|TopLeft" ID="ControlName"
 Style="CSSStyles" CssClass="ClassName" Height="<int>"
Width="<int>"
 ShowDecreaseHandler="true|false" ShowIncreaseHandle="true|-
false"
 WrapperTag="HTMLTag" Alt="Alt Text" />

Sort

Developer's Reference Guide | 75

BP Logix Inc
Process Director Documentation

This Form control will place a button on a Form which will sort an array.
Properties

PROPERTY NAME DESCRIPTION

ArrayName Specify the name of the array to sort.

Descending Specify true to sort in descending order.

ImageURL Sets an optional image for the button.

Primary Specify the column name of the primary sort key.

Secondary Specify the column name of the optional secondary sort
key.

Tertiary Specify the column name of the optional tertiary sort key.

Text Sets the optional button text.

Examples

<bpx:Sort runat="server" ID="ControlName" Text="Text to Dis-
play"
 ArrayName="MyArray" Primary="ColumnName" />

Sum
This Form control sums all items of a column in an array. Please note the ID is
optional as it can be a system variable.
Properties

PROPERTY NAME DESCRIPTION

Column The column in an array that you'd like to sum up.

Example

<bpx:Sum ID="ControlName" runat="server" Column="ColumnName"/>

SysVar
This Form control is used to evaluate and display a System Variable. You can pass
an entire System Variable string in the SysVarString property, or you can break
apart the System Variable into individual properties.

76 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Properties

PROPERTY NAME DESCRIPTION

-Or-

Encode Optionally set the encoding type.

IfNull Optionally set the “If sysvar is null” string.

Post Optionally set the “postfix” string.

Pre Optionally set the “prefix” string.

SysVarName Set the system Variable name.

SysVarNamedParms Optionally sets the System Variable named parameters.
Multiple parameters can be passed separated by a
comma.

SysVarParms Optionally sets the System Variable parameters. Multiple
parameters can be passed separated by a colon.

SysVarString Set this property to pass an entire System Variable in one
string.

Example

<bpx:SysVar ID="ControlName" runat="server"
SysVarName="SYSVAR_NAME"
 SysVarNamedParms="SysVarParam1:SysvarParam2"/>

Use Case Examples
This example displays the date 1 week from now.

<bpx:SysVar ID="SysVar1" runat="server" SysVarName="CURR_DATE"
 SysVarNamedParms="Days=7"/>

This example displays the current user’s ID on the form. Notice the ! to HTML-
encode the string.

<bpx:SysVar ID="SysVar2" runat="server" SysVarString="{!CURR_
USER }"/>

Tab

Developer's Reference Guide | 77

BP Logix Inc
Process Director Documentation

This control is used to identify each tab in a tab strip. The value of the TabStrip will
be the selected Tab.
Properties

PROPERTY NAME DESCRIPTION

PageViewID The ID of the related TabContent control

Text Optional text for the actual Tab

Value Optional value for the control if this tab is selected

See the TabContent control below for an extended code sample.

TabContent
This Form control contains the actual content for a single tab. You can place any
number of Form controls inside a TabContent section.
Properties

PROPERTY NAME DESCRIPTION

ID The ID of the content for the tab strip

Example

<bpx:TabStrip runat="server" ID="MyTabStrip"
 MultiPageID="MyTabStrip_Content">
 <Tabs>
 <bpx:Tab runat="server" PageViewID="tab1" />
 <bpx:Tab runat="server" PageViewID="tab2" />
 </Tabs>
</bpx:TabStrip>
<bpx:TabStripContent runat="server" ID="MyTabStrip_Content">
 <bpx:TabContent ID="tab1" runat="server">

<!--Form data inside tab 1. This can include any form
control-->
 </bpx:TabContent>
 <bpx:TabContent ID="tab2" runat="server">

<!--Form data inside tab 2-->
 </bpx:TabContent>
</bpx:TabStripContent>

TabStrip
This Form control creates a tab strip section.

78 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Properties

PROPERTY NAME DESCRIPTION

ID Optional ID if the value of the selected tab should be main-
tained

MultiPageID The ID of the related TabStripContent control

See the TabContent control above for an extended code sample.

TabStripContent
This control identifies the actual contents of the various tabs.
Properties

PROPERTY NAME DESCRIPTION

ID The ID of the content for the tab strip

See the TabContent control above for an extended code sample.

TimePicker
This Form control places a picker for selecting time values on a Form.
Properties

PROPERTY NAME DESCRIPTION

EndTime (Optional) Sets the maximum time (of day) for the pre-
selected picker values. Must exceed the StartTime value.

Interval (Optional) The amount of time (in minutes) between pre-
selected picker values.

StartTime (Optional) Sets the beginning time (of day) for the pre-
selected values available for the picker.

Example

<bpx:TimePicker ID="ControlName" runat="server"
StartTime="11AM"
 EndTime="3:45pm" Interval="15" />

UserPicker
This Form control will display a User Picker on the form.

Developer's Reference Guide | 79

BP Logix Inc
Process Director Documentation

Properties

PROPERTY NAME PROPERTY
ATTRIBUTES

DESCRIPTION

DropdownPrompt Optional text to show on the drop-
down if no user is selected

Height For ListBox PickerType only; sets
the height of the ListBox control

InGroup Optional filter to only show users
that are members of the specified
group.

Multiple True Allow multiple users to be selec-
ted.

PickerType Dropdown
Popup
ListBox

Dropdown – use a dropdown con-
trol
Popup – use a popup control.
ListBox – use a listbox control.

Width For ListBox PickerType only; sets
the width of the ListBox control

Example

<bpx:UserPicker ID="ControlName" DropdownPrompt="Prompt Text"
 PickerType="Popup" runat="server"
 Multiple="true" InGroup="GroupName" />

Form Controls and JavaScript
You can use JavaScript to access the actual HTML controls for BP Logix controls and
bind JavaScript events to them. For example, the JavaScript:
CurrentForm.FormControls["YOUR_CONTROL"]

returns the HTML object in JavaScript. Therefore, you could use:
CurrentForm.FormControls ["BpTextBox1"].onkeypress = BpTextBox2_
Keypressed;

to bind to the onkeypress event.

80 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Note that if you want this event to fire even after a postback (such as a button
event), you should place this into a bpUserJavaScript function on your page. This
function will be called after the initial page load, AND after each postback. For
example, place this on your ASCX page:

function bpUserJavaScript()
{
 CurrentForm.FormControls["ControlName"].onkeypress = BpTex-
tBox2_Keypressed;
}

In addition, you can simply use the native ASP.NET textbox, checkbox, radio button,
or dropdown controls and their corresponding server tags, and use standard
JavaScript for those controls. Other native ASP.NET controls aren't supported for
this functionality.

Custom Workspace Portlets
When creating home page portlets in workspaces, it's often helpful to use a par-
ticular URL to display in a portlet, using the "Specific URL" setting in the portlet's
configuration. For internal URLS, however, the relative paths may change to the
URL depending on whether the workspace is on a development server or a pro-
duction server. You may also want to show different URLs in a portlet based on the
user's identity, work center, etc. In cases like these, you need to be able to make
the URL dynamic, rather than using a hard-coded URL. Through the use of Custom
Variables you can create a variable to store the appropriate URLs you might wish
to display, as well as add logic to determine when different URLs should be dis-
played.
Process Director allows you to set your own system variables in the vars.cs.ascx
file. All custom vars that you create are formatted as strings, so you should use
string syntax when setting the variable's value, i.e., use double quotes ("") around
the value. Process Director will convert custom vars to numbers on the fly if
numeric comparisons or calculations are required. Custom vars that you create are
stored in a custom dictionary as key/value pairs.
There are two methods available in the custom vars file for creating custom vars:
SetSystemVars and PreSetSystemVars. The PreSetSystemVars method is called
prior to initializing the Process Director database, while the SetSystemVars method
is called after database initialization.

Developer's Reference Guide | 81

BP Logix Inc
Process Director Documentation

In general, this means that the default method to use when creating custom vars is
the PreSetSystemVars method; however, if you need to set the value of the var
based on information stored in the database, such as the identity of the user or the
workspace in which the user is working, you must use the SetSystemVars method.
The following example shows how to set a simple custom variable to a URL.

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

//This creates a new custom var that can be access from
anywhere within
 //Process Director by using the syntax {CustomVar:PORTLET_
URL}

bp.Vars["PORTLET_URL"] = "http://www.myurl.com";
}

You can also add any programming logic you'd like here, to display different URLs
under the different conditions you devise.
Using the syntax {CustomVar:MY_VAR} elsewhere in Process Director will return
the custom variable (in this case, "MY_VAR") value that was defined in the vars.c-
s.ascx file.
In the Home Page Windows tab of the Workspace configuration screen, set the
Type of the portlet in which you wish to display a URL to "Specific URL". An input
box labeled "URL" will appear beside the Type dropdown.
In the URL input box, type the name of the custom variable you created, using the
following syntax:
{customvar:PORTLET_URL}

82 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Custom Tasks
Custom Tasks can be written in Process Director and used by Forms and Process
Timeline definitions. A Custom Task enables common business logic to be pack-
aged in a reusable way and made available to users that are building Forms and
Process Timelines. You should be familiar with writing custom scripts for Forms
and Process Timelines before writing a Custom Task. There are two types of Cus-
tom Tasks; Form Custom Tasks and Process Custom Tasks.

Developer's Reference Guide | 83

BP Logix Inc
Process Director Documentation

What Custom Tasks Can Be Used For
Custom Tasks can provide various types of business functions that are unique to
your environment, or common functions that can be used across multiple Form
and Process Timeline definitions. For sample Custom Tasks contact BP Logix.

Form Custom Tasks
A Form Custom Task provides users that are building Forms the ability to execute
custom business logic when the end-user is filling out the Form. A Custom Task is
mapped to an event on the Form (e.g., a button). When the end-user triggers this
event, the Form Custom Task script will be executed. A Form Custom Task can
provide a mapping of external fields (e.g. database) to the fields on a Form.
When the script for a Form Custom Task is run, it can optionally display an inter-
face to the user. The Custom Task script can query and/or set any of the form data
on the container Form.

Process Custom Tasks
A Process Custom Task provides users that are building processes the ability to use
custom business logic in the Process Timeline definition. The Custom Tasks will dis-
play a Form interface to the user building the Process Timeline that enables them
to configure the data required for the Custom Task. This configuration form is avail-
able from the Custom Task tab of a Process Timeline activity of the Custom Task
Activity Type. This configuration data will be available to the Custom Task script
when the Timeline Activity is run. The Custom Task script will run in a similar envir-
onment to a Timeline script and has access to all Timeline objects and their data.
A Process Custom Task can't display an interface to the end-user participating in
the process. The only interface displayed is during the configuration of the Custom
Task in the Process Timeline definition.

How Custom Tasks Work
Custom Tasks in Process Director provide a way to package reusable functions for
Form builders and process implementers. They consist of a Form and a script file.
This enables your business logic to be placed in the script, and the Form is used to
collect configuration information for the script, and optionally can display an inter-
face (Form Custom Tasks only). a Form Custom Task can be mapped to different

84 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

events (e.g. form display, button, etc.) on a standard Form and are run when the
event occurs.

Configuration vs. Running
The Custom Tasks are executed in the following modes:
ConfigurationThis is when the user is configuring the data needed for the Custom
Task to run. During the configuration, it is common to display a list of the form
fields in the container Form. This enables fields to be mapped to external sources
by the builder of a Form, without requiring them to have any special naming con-
vention for their form fields.
Run-time (run)The Custom Task is run when a mapped Form event is triggered or
when aCustom Task Timeline Activity has been invoked. When a Custom Task is
run, it has access to the configuration data and the container Form.

Configuration Data
When a Custom Task is configured, a form data instance is created that contains
the configuration data entered. This form instance is stored “under” the Form
definition or Process Timeline definition, depending on the type of Custom Task.
When the Custom Task is run (whether in a Form or Process Timeline), it has
access to all this configuration data in this form instance.

Container Form
A Custom Task can have a “container Form”. This is the standard Form that is dis-
played to the user. a Form Custom Task is mapped to an event on the container
Form. A container Form is optional for a Process Custom Task, but can be specified
as part of the step configuration on the Custom Task tab of the Timeline Activity's
definition. The Form and script part of a Custom Tasks has access to the container
form data.

Creating a Custom Task
A Custom Task requires a Form created in the .NET environment similar to how a
Form is created. To create a Form for a Custom Task, use the Create New menu
item in the Content List and select Form Definition in the dropdown. Then select
from the template dropdown “Use Empty .ASCX form”. The Form must be created
using the special options in the Form Definition page that is displayed. A Custom
Task can be created as a Form-only Custom Task, a process-only Custom Task, or a

Developer's Reference Guide | 85

BP Logix Inc
Process Director Documentation

Custom Task that can be used by both Forms and processes. This Form will also dis-
play any Custom Task configuration.
These events are called for forms and while configuring a Custom Task:

public override void BP_Init()
public override void BP_Event(bp.EventType pEventType, string
pEventName)
public override void BP_Validation()
public override void BP_Display()
public override void BP_Completed()

When a Custom Task is mapped to a Form, the following Custom Task function will
be called:

protected override bool CT_RunTask(bp.FormCTMappedTo
pMappedTo, string pEventName)

This event is called to "run" a Custom Task. It should return "true" to show the Cus-
tom Task GUI, or false to continue processing the form.

public override bool CT_RunTask(bp.FormCTMappedTo pMappedTo,
string pEventName)

This function should return "true" to show the Custom Task GUI.
This is created like any other Custom Task (Form, Process), and when the rule is
evaluated that uses the CT, this event will be called:

public override DataItem CT_RunRuleTask()

This is so the Custom Task can return a string, a list of UIDs, etc.
These events are called for Custom Tasks while running a GUI:

public override void CT_Init()
public override void CT_Event(bp.EventType pEventType, string
pEventName)
public override bool CT_Validation()
public override void CT_Display()
public override void CT_Completed()

Use this.FormInfo to access the current Form info. For example:

this.FormInfo.FormControl("SomeTextControl").Text = "This is
new text";

86 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

While in a Custom Task run or GUI, use this.ContainerFormInfo to access the con-
tainers form info (get/set form fields, etc). For example:

this.ContainerFormInfo.FormControl("SomeContainerControl").Re-
quired = true;

Use this.FormInfo.AddInfoMessage and this.FormInfo.AddErrorMessage to add
error or info messages to forms (e.g., for validation). For example:

this.FormInfo.AddInfoMessage(new FormMessageString("This info
message
 will display on the form!"));

A Custom Task may have 2 sections, FormControlCustomTaskConfig and FormCon-
trolCustomTaskRun. For example:

<bpx:FormControlCustomTaskConfig runat="server">
<!--This section includes stuff that is shown when a Custom
Task is
being configured-->
 <asp:TextBox ID="config_text1" run-
at="server"></asp:TextBox>
</bpx:FormControlCustomTaskConfig>

<bpx:FormControlCustomTaskRun runat="server">
<!--This section includes stuff that is shown when a Cus-

tom Task is
run inside a Form (if CT_RunTask returns true).-->

 <asp:TextBox ID="run_text1" runat="server"></asp:TextBox>
</bpx:FormControlCustomTaskRun>

Web Service Custom Tasks
Some of the Custom Tasks can utilize Web Services (e.g. calling a remote Web Ser-
vice to look up employee information from an employee ID stored on a form). Only
certain types of Web Services are directly supported. These Web Services must use
primitive data types such as numbers and strings as parameters. Other, more com-
plex Web Services, can be supported by "wrapping" them in a proxy Web Service.
This proxy Web Service calls the actual web service, but exposes it using primitive
data types that the Custom Tasks support.
An example of a Web Service wrapper is installed in the "C:\Program Files\BP
Logix\Process Director" folder as bpProxy.zip. This file contains a complete Visual
Studio project creating both a .ASMX Web Service, and a .DLL that has the web

Developer's Reference Guide | 87

BP Logix Inc
Process Director Documentation

reference to the complex Web Service. This Web Service wrapper can be deployed
on any IIS server. It can also easily be deployed in the Process Director web site by
copying the .DLL to the "C:\Program Files\BP Logix\Process Director\website\bin"
folder, and the .ASMX to the "C:\Program Files\BP Logix\Process Dir-
ector\website\custom\services" folder. After they are deployed, then can be ref-
erence like any other web service.
For more information, refer to the Web Services topic.

Classes
Custom programming in Process Director is performed by using a number of
classes that are built into the product SDK. Each class in the Process Director lib-
rary contains all of the relevant Properties Methods and Events, along with the
required and optional parameters available for each method. Each of the classes
are listed in the Table of Contents displayed in the upper right corner of the page.
In most cases, each class is named after the specific Process Director object the
class addresses. For instance, the ProcessTaskUser class provides the Methods for
manipulating the user assigned to the generic process task that's created by a run-
ning Process Timeline Activity. Similarly, the ProjectActivityUser class contains the
Methods for manipulating the user assigned to a specific Process Timeline Activity.
Exceptions to this Process Director object-based naming convention include:

l The bp class, which is the base class/namespace for all Process Director object
classes. This class is universal, and the global bp variable provides the system
context that is passed to many functions.

l The PDF class, which provides the methods for manipulating PDF documents,
irrespective of the Process Director object to which the PDF file is associated.

l The Excel class, which provides the methods for manipulating Microsoft Excel
documents, again, irrespective of the Process Director object to which the file is
associated.

Common Termination Reasons
The classes associated with Timeline Activities, Process Tasks, and Workflow Steps
all have a common set of termination reasons associated with every task or activ-
ity. The termination reason is set when the task or activity is completed. A list of
those classes would include:

88 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

l ProcessTask
l ProcessTaskUser
l ProjectActivity
l ProjectActivityUser
l Task
l WorkflowStep
l WorkflowStepUser

In the Process Director UI, text values are returned for the termination reasons. In
Process Director database tables, however, numeric values are stored for the ter-
mination reason in the nTermReason field of the appropriate table. Thus, any
records returned by database queries or views will display the numeric value for
the termination reason. The numeric values that may appear in the nTermReason
field, along with a description of each value, is provided in the Enumerators section
of Database Guide's Table Definitions topic.

bp Class
This object represents the SDK environment. All scripts will have access to this
object. This class contains many methods that implement utility routines (such as
logging, data conversion, etc).

Methods
CheckForAdvance
This API will force the process engine to start the task advance check logic.

Parameters
WFINSTID: Optional Workflow Instance ID to check.
PRINSTID: Optional Timeline Instance ID to check.
WFID: Optional Workflow Definition ID to check.
PRID: Optional Timeline Definition ID to check.

Returns
None.

Example

bp.CheckForAdvance(ProcessInstanceID, null, null, null);

Developer's Reference Guide | 89

Table Definitions.htm#Enumerators

BP Logix Inc
Process Director Documentation

DateDiff (Static Method)
This API will determine the value of the difference between two dates.

Parameters
BP: The bp environment.
DateFrom: The origin (starting) date
DateTo: The termination (ending) date
DifferenceType: The type or units of difference to calculate (e.g. days, seconds,
hours, years)

Returns
int: An integer representing the value of the difference between the two dates in
the specified units.

Example

// Should return the value '4'
int days = bp.DateDiff(bp, DateTime.Parse("2022-03-05"),
 DateTime.Parse("2022-03-09"),
 BPLogix.WorkflowDirector.SDK.FormControls.DateDiffType.Day-
s);

DBOpenComplete
This boolean property returns the status of the Process Director Database.
This can be used, for example, prior to making SDK calls that may access the data-
base in the custom vars file.

Parameters
none

Returns
boolean: This property returns true if the Process Director database has been suc-
cessfully opened.

90 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

// Called after database initialized
public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Before we make SDK calls that access the database,
 // ensure DB has been opened
 if (bp.DBOpenComplete)

{
// Routine to perform if true

 }
}

FormatCurr (Static Method)
This API will return a string that is formatted as a currency.

Parameters
Any integer, double, decimal, or string

Returns
string: The object formatted in a currency (depending on locale)

Example

string TempString;

// Returns $100.00 (assuming USA locale)
TempString = bp.FormatCurr("100");

// Returns $10.10 (assuming USA locale)
TempString = bp.FormatCurr(10.1);

// Returns ""
TempString = bp.FormatCurr("Bad Value");

GetExcelRows
This API imports an Excel file into memory.

Parameters
ExcelPath: The server local path to the Excel file to import (specify this or
ExcelDID).
ExcelDID: The ID of the document in the repository of the Excel file to import (spe-
cify this or ExcelPath).

Developer's Reference Guide | 91

BP Logix Inc
Process Director Documentation

SheetNumber: Zero-based sheet number to import (specify this or SheetName).
SheetName: Sheet name to import (specify this or SheetNumber).

Returns
list<bpExcelRow>: List of excel rows, or null if any error

Example

// This will import an Excel file
var Rows = bp.GetExcelRows("C:\\db_import.xlsx", // The file
path to import

null, // null since we are using
a file path

0, // The first sheet in the work-
book

null); // Null since we are using
SheetNumber
 // instead of SheetName
 if (Rows != null)

{
 foreach (var Row in Rows)

{
 foreach (var Col in Row.Columns)

{
bp.log0("Column value: " + Col.Value + ",

Column type: "
 + Col.Type);
 }
 }
 }

GetTempDirectory
This API will return a string for a local temporary directory.

Returns
string: The name of a local file system temporary directory.

GetTempFilePath
This API will return a string for a temporary file name. It will use random digits to
ensure the name is unique.

Parameters
An optional string to prepend, and optional string to append

92 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Returns
string: The string of a unique temporary file name and path.

Example

var TempFileName = bp.GetTempFilePath("begin","end");

GetCurrentProfileName
This API will return the string name of the currently selected profile for the current
user. If there is no profile selected, an empty string is returned.

Returns
string: The name of the current profile.

Example

bp.msg0("Current profile name: " + bp.GetCurrentProfileName
());

HTMLEncode / HTMLDecode (Static Method)
These APIs will HTML-encode or HTML-decode a string.

Parameters
string: the value to convert

Returns
string: Appropriate encoded or decoded value

Example

// Returns "You & me"
string test1 = bp.HTMLEncode("You & me");

// Returns "You & me"
string test2 = bp.HTMLDecode("You & me");

HTTPRequest (Static Method)
This API will return the content of a specified web page.

Parameters
String URL: the URL to get

Developer's Reference Guide | 93

BP Logix Inc
Process Director Documentation

Returns
string: The HTML content of the web page.

Example

// This will load the web page from google.com into a string
variable
string Result = bp.HTTPRequest("http://google.com");

HTTPRequestBytes (Static Method)
This API will return the bytes of a URL.

Parameters
String URL: the URL to get

Returns
byte array: URL contents

Example

// This will load the web page from google.com into a byte
array variable
var Result = bp.HTTPRequestBytes("http://google.com");

HTTPPoke (Static Method)
This API will POST a URL.

Parameters
String URL: the URL to POST

Returns
N/A

Example

// This will POST a certain web page
bp.HTTPPoke("http://myserver.com/pagetopost.aspx");

HTTPRest (Static Method)
This API will POST a URL and return the XML response as a string

94 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Parameters
string (URL): the URL to POST
string (XML Data): request data to POST (typically XML)

Returns
string: String variable containing response from page – typically in XML.

Example

// This will POST a request and get back the response
bp.HTTPRest
("http://myserver.com/pagetopost.aspx","<API>1</API>");

ImportExcelDatabase (Static Method)
This API import an Excel file into a database. The sheet name will be used as the
table name in the database. Only sheets with data in cell A1 will be imported. Row
1 in Excel is used to specify the column name in the database. You can optionally
specify a column type for each column by separating the column name from the
type with a colon. You can use several database independent column types, such
as"

l BP_STRING
l BP_DECIMAL
l BP_BOOL
l BP_INT
l BP_DATETIME

If you don't specify a type, the import process will guess at the type by looking at
the first row of data. Since the worksheet must have a header row to supply
column names and optional data types, the first data row will be row 2 of the work-
sheet.

Parameters
BP: The bp environment.
DestDB: The DataSource of the database to insert the Excel data.
ExcelPath: The server local path to the Excel file to import (specify this or
ExcelDID).

Developer's Reference Guide | 95

BP Logix Inc
Process Director Documentation

ExcelDID: The ID of the document in the repository of the Excel file to import (spe-
cify this or ExcelPath).
TBLPrefix: Optional prefix to add to all imported tables.
DropFirst: Should the tables be dropped before importing?
DoCreate: Should the tables be created during the import?
DeleteFirst: Should the rows be deleted before the import?

Returns
Boolean: True if the operation succeeds.

Example

// This will import an Excel file into the database
bp.ImportExcelDatabase(bp,

dbConnection, // The database to insert the Excel data
 "C:\\db_import.xlsx", // The file path to import

null, // null since we are using a file path
 "USER_", // All tables created will have USER_ prefix

true, // drop existing tables first
true, // create all tables in database
false); // no need to delete rows –

 // entire tables were dropped

INT | CURR | DOUBLE | DECIMAL | BPDATETIME (Static
Method)
These APIs will convert a string into the appropriate data type.

Parameters
string: the value to convert

Returns
Appropriate data type depending on method.

Example

// returns 10
int TempInt = bp.Int("10");

// returns DateTime object
DateTime TempDate = bp.bpDateTime("1/1/2010");

ImportXML, ImportGlobalKViewXML, ImportProfilesXML

96 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

These functions import XML data from an XML file that Process Director exported.
They mainly take the same parameters, but interpret the XML in different ways:

l ImportXML: reads the XML data into a file in the content list.
l ImportGlobalKViewXML: reads the XML file into a global Knowledge View.
l ImportProfilesXML: reads the XML file into a profile definition.

The method declarations are as follows:
public bool ImportXML(string XMLPath,
 string XMLDID,
 byte[] XMLData,
 string PID,
 string ParentFolderID,
 out List<string> RetMsg)

public bool ImportGlobalKViewXML(string XMLPath,
 string XMLDID,
 byte[] XMLData,
 out List<string> RetMsg)

public bool ImportProfilesXML(string XMLPath,
 string XMLDID,
 byte[] XMLData,
 out List<string> RetMsg)

Parameters
string XMLPath: The file path of the XML file.
string XMLDID: The document ID of the XML file.
byte []XMLData: The raw XML data.
string PID: ID of the partition in which to import this XML document.
string ParentFolderID: The ID of the folder that this XML document will be impor-
ted into.
out List<string> RetMsg: A list of messages returned by this function.

Returns
boolean: This function returns true if, and only if, the import is successful.

Developer's Reference Guide | 97

BP Logix Inc
Process Director Documentation

Example

//imports XML File
List<string> returnMessages = new List<string>();
bool success = bp.ImportXML("someXMLFile.xml", "1234", "1234",

returnMessages);

log0 | log1 | log2 | log3 | log4 | log5 (Static Method)
These APIs will send a logging message to the bp.log file. This file can be viewed on
disk, or you can use the web based log viewer. log0 will always be sent to the log
file. The other methods will be sent to log file depending on the system log level
setting.
The actual log will be written conditionally depending on the current logging level
of the system. log0 will always be written, log1 will only be written if the logging
level is 1 or higher, etc.
More information about logging can be found in the System Administrator's
Guide.

Parameters
Any formatted string or string variable.

Returns
None

Example

bp.log0("This is a test");
bp.log0("Some sample data " + CurrentForm.FormControl
("mydata").Text;
bp.log0(“Data1: {0} Data2: {1}”, 10, 20);

Login (Static Method)
This API will login as the specified user.

Parameters
BP: The bp environment.
User: The UserID to login.
Password: The password to login.

98 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Returns
boolean: True if the operation succeeds.

Example

// This will login the user from the edit fields on a form
bp.Login(bp, CurrentForm.FormControl("userid"),
 CurrentForm.FormControl("password"));

RunKView
This API runs a Knowledge View and returns the found rows of Content items.

Parameters
KVID: The Knowledge View ID to run.
Filter: List<NameValue> - Optional list of input filter to the Knowledge View. Use
{var:PARM} in the Knowledge View definition to access the filter fields.
StartFID: Optional Folder ID to filter.
StartCATID: Optional Category ID to filter.
Output: List<KViewResult> - List of resultant rows

Returns
boolean: True if the operation succeeds.

Example
In order for the RunKView method to execute properly, the Knowledge View defin-
ition must have the appropriate system variable set as a filter. In the case of the
example below, the Knowledge View must use the value of "Filter1" set as a filter.
For instance, let's say you wish to find the value of a filter named "Filter1" in a
Form field. In that case, your filter in the Knowledge View definition might look
something like this:

The RunKView method will pass the filter value in the Filter parameter, which is
identified by the "infilter" variable in the code snippet below.

// Run a Knowledge View, then log the results
var infilter = new List<NameValue>();
infilter.Add(new NameValue("Filter1","Value"));
List<bp.KViewResult> rows;

Developer's Reference Guide | 99

BP Logix Inc
Process Director Documentation

var res = bp.RunKView(CurrentForm.FormControl("kview_
picker").Text, infilter,

null, null, out rows);
if (res)
{
 foreach (var row in rows)

{
bp.log0("ID: " + row.ID + " type: " + row.ObjectType);

 foreach (var col in row.Columns)
{

bp.log0("Column Name: " + col.Name + " Value: " +
col.Value);
 }
 }
}

SendEmail (Static Method)
This API will send an email. This is an overloaded method, and the method declar-
ations are as follows:
public static bool SendEmail (bp BP,
 string pFORMID,
 string pFORMINSTID,
 List<ContentObject> pAttachments,
 string pSubject,
 string pToEmailUID,
 string pFromEmailAddress

public static bool SendEmail (bp BP,
 string pFORMID,
 string pFORMINSTID,
 List<ContentObject> pAttachments,
 string pSubject,
 string pToEmailAddress,
 string pToEmailDisplay,
 string pFromEmailAddress)

Parameters
BP: The bp environment.
FORMID: The form ID to use as the email template.

100 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

FORMINSTID: The ID of the form instance to be used for variable substation in the
email. Specify “null” if you don't wish to reference a form instance.
Attachments: A list of ContentObject attachments to add to the email
Subject: The subject of the outgoing email
ToEmailUID: The UID of the destination
FormEmailAddress: The email address of the sender of the email

Returns
boolean: True if the operation succeeds.

Example

bp.SendEmail(bp,
oMyFORM.ID, // The email template
oMyFORMINST.ID, // The form instance
null, // list of attachments

 "My Email Subject", // Subject
newuser.UID, // The ID of the “to” for the

email
 “from_email@company.com”); // The “from” email address/

Business Value Class
This object represents a Business Value object.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

ID String The ID of the Business Value

Name String The name of the Business Value

Text String The Text of a Business Value property

Value Data type spe-
cified in the data
source

The Value of a Business Value property

Values List object A list object containing all of the Values
returned by a Business Value

Number Decimal If a Business Value property returns a
numerical value, the Number property

Developer's Reference Guide | 101

BP Logix Inc
Process Director Documentation

PROPERTY NAME DATA TYPE DESCRIPTION

casts the value as a decimal number. If
the value isn't a number, the Number's
property will return "0".

Numbers Decimal If a Business Value property returns a
numerical value, Numbers property will
return a list object containing all of the
values, cast as decimals numbers. If the
the value isn't a number, the Number's
property will return "0".

DateTime DateTime If a Business Value property returns a
DateTime value the DateTime property
will return the value cast as a DateTime
object.

DateTimes List Object If a Business Value property returns a
DateTime value the DateTimes prop-
erty will return a list object with all the
values cast as a DateTime object.

Methods
GetBusinessValueByID
This API will return the Business Value object specified by the Business Value ID.

Parameters
bp: The Process Director environment.
pBVID: The string ID of the Business Value.

Returns
object: A Business Value object.

Example

var myBV = BusinessValue.GetBusinessValueByID(bp, "Busi-
nessValueID");

GetBusinessValueByName

102 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

This API will return the Business Value object specified by the Business Value's
Name.

Parameters
bp: The Process Director environment.
PID: The string PartitionID of the partition in which the Business Value is located.
pName: The name of the Business Value.

Optional Parameters
pGroup: The Group Name configured for the Business Value. This is the group
name specified in the Group in Value Picker property on the Business Value defin-
ition's Options tab.

Returns
object: A Business Value object.

Example

var myBV = BusinessValue.GetBusinessValueByName(bp, "Par-
titionID", "BVName");

Parameters
This API will return a list containing all of the names of the Parameters for a Busi-
ness Value.

Parameters
None

Returns
list <string>: List of parameters.

Example

var myBV = BusinessValue.GetBusinessValueByID(bp, "Busi-
nessValueID");
var myParams = myBV.Parameters();

Properties
This API will return a list containing all the properties of a Business Value.

Developer's Reference Guide | 103

BP Logix Inc
Process Director Documentation

Parameters
None

Returns
list <object>: List of BusinessValueProperty objects.

Example

var myBV = BusinessValue.GetBusinessValueByID(bp, "Busi-
nessValueID");
var myProps = myBV.Properties();

Property
This API will return a specified Business Value property.

Parameters
pPropName: The string name of the Property to return.

Returns
object: A Business Value Property object.

Example

var myBV = BusinessValue.GetBusinessValueByID(bp, "Busi-
nessValueID");
BusinessValueProperty myProp = myBV.Property("PropertyName");
string val = myProp.Value;

SetParameter
This API will set a Parameter value for a Business Value.

Parameters
pParamName: The string name of the Parameter to set.
pParamValue: The string value to set for the Parameter.

Returns
None

Example

var myBV = BusinessValue.GetBusinessValueByID(bp, "Busi-
nessValueID");
myBV.SetParameter("ParamName", "ParamValue");

104 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

TextList
This API will return a list containing all of the Display Strings for a Business Value
Property, as opposed to the Property values, those these will usually be the same.
This is most often useful for filling dropdown controls that use different display
and value fields.

Parameters
None

Returns
list <string>: List of Display Strings.

Example

var myBV = BusinessValue.GetBusinessValueByID(bp, "Busi-
nessValueID");
BusinessValueProperty myProp = myBV.Property("PropertyName");
List<String> val = myProp.TextList;

Case Class
This class represents a Case object.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

Group String The Group Name configured for the
Case.

Methods
AddToCase
This API will add a content object to a case instance.

Parameters
pObj: The content object to add to the case.

Returns
boolean: Returns"true" if the operation succeeds

Developer's Reference Guide | 105

BP Logix Inc
Process Director Documentation

Example

var newCase = Case.CreateCase(bp, "CASEID");
newCase.AddToCase(CurrentForm);

CreateCase
This API will create a new instance of a Case object.

Parameters
bp: The Process Director environment.
pCASEID: The CaseID of the Case definition.

Returns
object: A Case Object.

Example

var newCase = Case.CreateCase(bp, "CASEID");

GetCaseByCASEID
This API will return a specified Case object.

Parameters
bp: The Process Director environment.
pCASEID: The CaseID of the Case definition.

Returns
object: A Case Object.

Example

var myCase = Case.GetCaseByCASEID(bp, "CASEID");

GetCaseByCASEINSTID
This API will return a specified Case object.

Parameters
bp: The Process Director environment.
pCASEINSTID: The CaseInstanceID of the Case instance.

106 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Returns
object: A Case Object.

Example

var myCase = Case.GetCaseByCASEINSTID(bp, "CASEINSTID");

GetCaseProperties
This API will return a List object containing all of the properties for a Case.

Parameters
None

Returns
list <object>: A list of Case property objects.

Example

var myCase = Case.GetCaseByCASEINSTID(bp, "CASEINSTID");
List<NameValueEx> myVals = myCase.GetCaseProperties();
// Get the first value from the list
string val = myVals[0].Value;

GetPropertyText
This API will return the specified property of a Case object. This API will return the
value from any case property type, including number or DateTime values, cast as a
string.

Parameters
pPropName: The string name of the property to return.

Returns
string: The case property value.

Example

var myCase = Case.GetCaseByCASEINSTID(bp, "CASEINSTID");
string myVal = myCase.GetPropertyText("PropertyName");

GetPropertyNumber
This API will return the specified property of a Case object, if the property is a
numeric value. If the property is a string or a DateTime, the API will return "0".

Developer's Reference Guide | 107

BP Logix Inc
Process Director Documentation

Parameters
pPropName: The string name of the property to return.

Returns
decimal: A decimal number containing the case property value.

Example

var myCase = Case.GetCaseByCASEINSTID(bp, "CASEINSTID");
string myVal = myCase.GetPropertyNumber("PropertyName");

GetPropertyDateTime
This API will return the specified property of a Case object, if the property is a
DateTime value. If the property is a string or a number, the API will return null.

Parameters
pPropName: The string name of the property to return.

Returns
object: A DateTime object containing the case property value.

Example

var myCase = Case.GetCaseByCASEINSTID(bp, "CASEINSTID");
string myVal = myCase.GetPropertyDateTime("PropertyName");

RecalcCaseInstanceName
This API will recalculate the name of the case instance to update any changes to
the data used in the instance name, such as form field or case variables.

Parameters
None

Returns
None

Example

var myCase = Case.GetCaseByCASEINSTID(bp, "CASEINSTID");
myCase.RecalcCaseInstanceName();

SetPropertyText

108 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

This API will set the specified property of a Case object. If the case property is a
numeric or DateTime value, Process Director will cast the string to the correct data
type.

Parameters
pPropName: The string name of the property to return.

Returns
None

Example

var myCase = Case.GetCaseByCASEINSTID(bp, "CASEINSTID");
string myVal = "Value";
myCase.SetPropertyText("PropertyName") = myVal;

SetPropertyNumber
This API will set the specified property of a Case object, if the case property is a
numeric value. Otherwise, the value will be set to null.

Parameters
pPropName: The string name of the property to return.

Returns
None

Example

var myCase = Case.GetCaseByCASEINSTID(bp, "CASEINSTID");
int myVal = 1;
myCase.SetPropertyNumber("PropertyName") = myVal;

SetPropertyDateTime
This API will set the specified property of a Case object, if the case property is a
DateTime value. Otherwise, the value will be set to null.

Parameters
pPropName: The string name of the property to return.

Returns
None

Developer's Reference Guide | 109

BP Logix Inc
Process Director Documentation

Example

var myCase = Case.GetCaseByCASEINSTID(bp, "CASEINSTID");
datetime myDate = new DateTime(2023, 1, 18);
myCase.SetPropertyDateTime("PropertyName") = myDate;

ConditionSet Class
This object represents a Condition Set used for a Process Director object.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

ID String The string ID of the ConditionSet.

In addition to Properties, Condition Sets use the SystemVariableContext object to
specify the various context properties for the Condition Set. Please see the Sys-
temVariableContext topic for more information. Additionally, the Condition struct
object is required as a parameter for some methods of this class. The Condition
struct is documented below.

Methods
Copy
This API will create a copy of a ConditionSet. This is an overloaded method with the
following possible declarations:
public ConditionSet Copy()

public ConditionSet Copy(IEnumerable<Condition> cConditions)

public ConditionSet Copy(ContentObject oContainer)

public ConditionSet Copy (ContentObject oContainer, IEnu-
merable<Condition> cConditions)

Parameters
cConditions: A iEnumerable Condition struct object that defines the conditions
included in the ConditionSet.
oContainer: A ContentList object.

Returns
Rule object:Will return null if the ConditionSet isn't found.

110 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example
See the general Code Sample below.

Evaluate
This API will call the evaluation of the ConditionSet, returning the appropriate data.
This is an overloaded method with the following possible declarations:
public bool Evaluate(SystemVariableContextReadonly Context)

public bool Evaluate(SysVarClass.IContextReadonly Context)

Parameters
Context: A SystemVariableContext object containing the context settings for the
Condition Set.

Returns
string: The result of the Condition Set's evaluation.

Example
See the general Code Sample below.

Update
This API will update a ConditionSet.

Parameters
cConditions: A iEnumerable Condition struct object that defines the conditions
included in the ConditionSet.

Returns
Rule object:Will return null if the ConditionSet isn't found.

Example
See the general Code Sample below.

Condition Struct
The Condition Struct object is an IEnumerable object that stores a condition or set
of conditions.

Properties
These properties can be enumerated via a Get, but are Set privately, and can't be
Set in script.

Developer's Reference Guide | 111

BP Logix Inc
Process Director Documentation

PROPERTY NAME DESCRIPTION

Left A SystemVariable object that defines the Left side of the
condition.

Right A SystemVariable object that defines the Right side of the
condition.

Type The type of comparison to make between the left and
right side of the Condition.

Methods
Copy
This API will create a copy of a Condition.

Parameters
None

Returns
Condition object: A Clone of the specified Condition object.

Example
See the general Code Sample below.

Code Sample
A user can't instantiate a ConditionSet (or a Condition) object. Users will only inter-
act with these objects through the “ReturnValues” property of a Business Rule. The
following code evaluates a Business Rule, and then manually evaluates its return
values, returning the first match:

var context = new SystemVariableContext {Form = BaseForm};
var sv = new SystemVariable(bp.eSysVar.FormField,
 new DataItem(FormEnums.eDataType.String),

{String = "UserPicker1"});
sv.Parameters["format"] = "uid";
var sEval = sv.Evaluate(context);

var rule = Rule.GetRuleByRULEID(bp, "RULEID");
var resultRule = rule.Evaluate(context);

ReturnFirst(rule, context);

// Return the First matching value in a Rule
static string ReturnFirst(Rule rule, SystemVariableContext

112 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

context)
{
 foreach(var rv in rule.ReturnValues)

{
// The Copy below function is unnecessary, and added

only for illustration.
 // In actual use, the line below would simply be:
 // var cs = rv.Value();
 var cs = rv.Value.Copy();
 if (cs.Evaluate(context))
 return rv.Key.Evaluate(context);
 }
 return "";
}

ContentObject Class
This object represents the base class for all content objects (documents, Forms,
Process Timelines, etc) stored in Process Director. All properties, methods, and
events of this base class are available to every content object derived from this
class.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

ContentPath String The full path including folders for this
object

CreateTime DateTime The date/time the object was created

CreateUID String The UID of the user that created the
object

Description String The description of this object

GroupName String The optional group name that this
object is stored in (e.g. for Form attach-
ments)

Icon String The Icon number of this object

ID String The ID of this object

Name String The name of this object

Parent_ID String The optional ID of the parent of this

Developer's Reference Guide | 113

BP Logix Inc
Process Director Documentation

PROPERTY NAME DATA TYPE DESCRIPTION

object

PID String The internal Partition ID

Size Integer The size of this object, in Kilobytes.

Type String The description of this object

UpdateTime DateTime The date/time the object was last
updated

UpdateUID String The UID of the user that last updated
the object

Version Integer The version of the object. The version
number is incremented for documents
every time a document is checked in.
For forms, the version number is incre-
mented each time a user saves
changes on the form.

PermObject Class
Since each object in the ContentObject Class has permissions that can be applied
to the object, the PermObject class is used by the various permissions methods,
such as SetPermissions, or GetPermissionsto list, get, set, and replicate per-
missions.
Properties

PROPERTY NAME DESCRIPTION

PermID The Permissions ID GUID string for the permission.

OID The Object ID GUID string for the object to which the per-
mission is applied.

GrantID The Grant ID GUID string for the permissions grant. This
is the user or group ID for the user or group to whom the
grant is given.

PID The Partition ID GUID string for the partition in which the
object resides.

GrantType The Grant Type of the permission. This is an object value

114 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

PROPERTY NAME DESCRIPTION

that enables you to set the object type to User or Group.

fRead A boolean value to determine whether or not to grant
read permission to the Content Object, i.e., an Object
Definition.

fWrite A boolean value to determine whether or not to grant
write permission to the Content Object, i.e., an Object
Definition.

fDelete A boolean value to determine whether or not to grant
delete permission to the Content Object, i.e., an Object
Definition.

fExecute A boolean value to determine whether or not to grant
execute permission to the Content Object, i.e., an Object
Definition.

fRead2 A boolean value to determine whether or not to grant
read permission to the child objects of a Content Object,
i.e., an Object Instance.

fWrite2 A boolean value to determine whether or not to grant
write permission to the child objects of a Content Object,
i.e., an Object Instance.

fDelete2 A boolean value to determine whether or not to grant
delete permission to the child objects of a Content Object,
i.e., an Object Instance.

The values below are used only for Deny permissions. This won't be
applicable to most installations. We strongly recommend that, due to
system overhead, Deny permissions not be used unless necessary.

fReadEx A boolean value to determine whether or not to deny read
permission to the Content Object, i.e., an Object Defin-
ition.

fWriteEx A boolean value to determine whether or not to deny

Developer's Reference Guide | 115

BP Logix Inc
Process Director Documentation

PROPERTY NAME DESCRIPTION

write permission to the Content Object, i.e., an Object
Definition.

fDeleteEx A boolean value to determine whether or not to deny
delete permission to the Content Object, i.e., an Object
Definition.

fExecuteEx A boolean value to determine whether or not to deny
execute permission to the Content Object, i.e., an Object
Definition.

fReadEx2 A boolean value to determine whether or not to deny read
permission to the child objects of a Content Object, i.e., an
Object Instance.

fWriteEx2 A boolean value to determine whether or not to denywrite
permission to the child objects of a Content Object, i.e., an
Object Instance.

fDeleteEx2 A boolean value to determine whether or not to deny
delete permission to the child objects of a Content Object,
i.e., an Object Instance.

Methods
Add
This API will add an object as child to the current object. This is an overloaded
method, with the following possible method declarations:
public virtual bool Add(string pID)

public virtual bool Add(string pID, string pGroup)

public virtual bool Add(ContentObject pObj)

public virtual bool Add(ContentObject pObj, string pGroup)

Parameters
ContentObject: The ContentObject to add to this object.
pGroup: Optionally the group name to add into.
pID: The ID of the object to add.

116 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Returns
boolean: True if the operation succeeds.

Example

CurrentForm.Add(Form.Instantiate(bp, "ObjectID"));

AddDocumentFromFS
This API will create a new document under an object from the local file system. This
is an overloaded method with the following possible declarations:
public Document AddDocumentFromFS(string Path)

public Document AddDocumentFromFS(string Path, string Name)

public Document AddDocumentFromFS(Stream Stream, string Name)

public Document AddDocumentFromFS (Stream Stream, string Name,
 string DocName)

Parameters
Path: The folder or full path to the local file.
Name: Optionally the file name in the path.
Stream: A FileSystem Stream object to add as a document

Returns
ContentObject: The new content object or null if the add fails.

Example

var oObject = Project.GetProjectbyPRID(bp, "PRID");
oObject.AddDocumentFromFS("c:\\documents\\doc1.doc");

AddDocumentFromBytes
This API will create a new document under an object from a byte array. This is an
overloaded method with the following possible declarations:
public Document AddDocumentFromBytes (string Name,
 byte[] Bytes)

public Document AddDocumentFromBytes (string Name,
 byte [] Bytes,
 bool Replace)

Developer's Reference Guide | 117

BP Logix Inc
Process Director Documentation

public Document AddDocumentFromBytes (string Name,
 byte [] Bytes,
 bool Replace,
 bool SkipAutoWfStart)

Parameters
Name: Name of the new document.
Bytes: The array of bytes used to set the document contents.
Replace: Boolean value to direct if the document should replace another
SkipAutoWfStart: Boolean to determine whether to automatically start a process

Returns
ContentObject: The new content object or null if the add fails.

Example

byte[] DocumentData;
var oObject = Project.GetProjectbyPRID(bp, "PRID");
// Set document data from reading from file, web service call,
etc
// DocumentData = ...
oObject.AddDocumentFromBytes("My Doc.doc", DocumentData);

AddObjectMap
This API will add a shortcut to the object into the destination. This is an overloaded
method with the following possible declarations:
public bool AddObjectMap(string DestinationID, ObjectType Destin-
ationObjectType)

public bool AddObjectMap(string DestinationID)

public bool AddObjectMap(ContentObject DestinationObj)

Parameters
ContentObject: The Content object to add a shortcut into.
DestinationID: The ID of the Content Object to add a shortcut into.
DestinationObjectType: The Type of the Content Object to add a shortcut into.

Returns
boolean: True if the operation succeeds.

118 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

var oObject = Document.GetDocumentbyDID(bp, "DID");
oObject.AddObjectMap("1234", ObjectType.Folder);

AddPending
This API will Add an object to the "Pending" queue, meaning that it will attach the
object to the first Process which starts on it.
This is an overloaded method with the following possible declarations:
public bool AddPending(ContentObject pObj)

public bool AddPending(ContentObject pObj, string pGroup)

Parameters
pObj: The Content object to add to the pending queue.
pGroup: The Group Name of the Object.

Returns
boolean: True if the operation succeeds.

Example

// Set the Process and content object
var oProcess = Project.GetProcessByID(bp, "PRID");
var oObject = Form.GetFormByFORMID("FORMID");
//Add the object to the Pending Queue
oProcess.AddPending(oObject);

AssignCategory
This API will set the Meta Data category for an object. This is an overloaded
method with the following possible declarations:
public bool AssignCategory(string Category)

public static bool AssignCategory(bp BP, string ID, string Cat-
egory)

Parameters
BP: The BP Logix environment class.
ID: The string ID of the Content Object.

Developer's Reference Guide | 119

BP Logix Inc
Process Director Documentation

Category: The string name of the category to which the object should be assigned.

Returns
boolean: True if the operation succeeds.

Example

var oObject = Form.GetFormByFORMID("FORMID");
oObject.AssignCategory("CategoryName");

ConvertSysVarsInString
This API will convert system variables in a given string. This is an overloaded
method with the following possible declarations:
public virtual string ConvertSysVarsInString(string pString)

public virtual string ConvertSysVarsInString (string pString,
 SysVarClass.Context pContext)

public virtual string ConvertSysVarsInString (string pString,
 SysVarClass.IContextReadonly pContext)

Parameters
pString: The string containing optional SysVars to convert.
pContext: A System Variable Context object identifying the context of the variables

Returns
string: The converted string

Example

var oObject = Form.GetFormByFORMID("FORMID");
var NewString = oObject.ConvertSysVarsInString("Convert
{EMBEDDED_SYSVAR}");

CopyObject
This API will copy the Content Object to a destination. This is an overloaded
method with the following possible declarations:
public string CopyObject (string DestinationID,
 ObjectType DestinationObjectType)

public string CopyObject(string DestinationID)

public string CopyObject(string DestinationID, string GroupName)

120 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Parameters
DestinationID: The ID of the Content Object to copy into.
DestinationObjectType: The Type of the Content Object to copy into. (optional
parameter)
GroupName: The Group name of the object

Returns
string: The ID of the new object, or “” if the copy failed.

Example

var oObject = Form.GetFormByFORMID("FORMID");
oObject.CopyObject("DestinationID", "GroupName");

DeleteObject
This API will delete the Content Object.

Parameters
none

Returns
boolean: True if the operation succeeds.

Example

var oObject = Form.GetFormByFORMID("FORMID");
oObject.DeleteObject();

DeleteObjectAndChildren
This API call will delete a Content List instance object and all of its child objects. For
instance, you can delete a form of process instance as well as all document attach-
ments for those instances.

Parameters
none

Returns
boolean: True if the operation succeeds.

Developer's Reference Guide | 121

BP Logix Inc
Process Director Documentation

Example

var oObject = Form.GetFormByFORMID("FORMID");
oObject.DeleteObjectAndChildren();

GetAttribute
This API will get a specific attribute from the object’s meta data. This is an over-
loaded method with the following possible declarations:
public DataItem GetAttribute(string Category, string Attribute)

public static DataItem GetAttribute(bp BP, string ID, string Cat-
egory,
 string Attribute)

public DataItem GetAttribute(string pATTID)

public static DataItem GetAttribute (bp BP, string ID, string
ATTID)

public DataItem GetAttribute(MetaCategory pCat, string Attribute)

public static DataItem GetAttribute(bp BP, string ID, MetaCat-
egory Cat,
 string Attribute)

Parameters
Category: The Category of the Attribute to retrieve
Attribute: The Attribute name to retrieve
BP: The Process Director BP Object
ID: The ID of the attribute to retrieve
pCat: The Meta Data Category object
Cat: The Meta Data Category object of the Attribute re retrieve
ATTID: The Attribute Id of the Attribute to retrieve

Returns
DataItem: The data corresponding to the Attribute

122 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

var oObject = Project.GetProjectbyPRID(bp, "PRID");
var dataAtt = oObject.GetAttribute("Category 1.Category 2",
 "Attribute Name");
var val = dataAtt.String;

GetAttributes
This API will get a list of attributes from the object’s meta data. This is an over-
loaded method with the following possible declarations:
public List<NameValueEx> GetAttributes()

public static List<NameValueEx> GetAttributes(bp BP, string ID)

public List<NameValueEx> GetAttributes(MetaCategory pCat)

public static List<NameValueEx> GetAttributes(bp BP, string ID,
 MetaCategory pCat)

public List<NameValueEx> GetAttributes(string pCat)

Parameters
BP: The Process Director BP Object
ID: The ID of the attribute to retrieve
pCat: The Meta Data Category object

Returns
list: The Name-Value pairs of each Attribute

Example

var oObject = Form.GetFormByFORMID("FORMID");
var atts = oObject.GetAttributes("Category 1");
foreach(var att in atts)
{
 var name = att.Name;
 var val = att.Value;
}

GetChildren
This API will create a list of all the children for the content object. This is an over-
loaded method with the following possible declarations:
Gets All Children:

Developer's Reference Guide | 123

BP Logix Inc
Process Director Documentation

public virtual List<ContentObject> GetChildren()

public static List<ContentObject> GetChildren(bp BP, string Par-
entID)

Gets children of specified eMapType:
public virtual List<ContentObject> GetChildren (bp.eMapType
MapType)

public static List<ContentObject> GetChildren (bp BP,
 string ParentID,
 bp.eMapType
MapType)

Gets children of specified ObjectType:
public virtual List<ContentObject> GetChildren (ObjectType
ObjectType)

public static List<ContentObject> GetChildren(bp BP, string Par-
entID,
 ObjectType
ObjectType)

Gets children with a specified groupname:
public virtual List<ContentObject> GetChildren(string GroupName)

public static List<ContentObject> GetChildren(bp BP, string Par-
entID,
 string GroupName)

public virtual List<ContentObject> GetChildren (ObjectType
ObjectType,
 string GroupName)

Gets children of specified ObjectType and eMapType:
public virtual List<ContentObject> GetChildren (ObjectType
ObjectType,
 bp.eMapType

124 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

MapType,
string GroupName)

public static List<ContentObject> GetChildren(bp BP, string Par-
entID,
 ObjectType
ObjectType,
 bp.eMapType
MapType,
 string GroupName)

Parameters
ObjectType: The optional type of objects to filter.
MapType: The optional map type of the objects to filter.
GroupName: The optional group name of the objects to filter.
ParentID: The optional ID of the parent object to filter

Returns
list<ContentObject>: A List of the ContentObject type.

Example

var childList = CurrentProject.GetChildren
(ObjectType.Document);

GetFileType
This API will return the file type for documents and Forms.

Parameters
none

Returns
string: The file extension (e.g. “docx”, “ascx”) of the document or Form.

Example

var oObject = Document.GetDocumentbyDID("DID");
var FileType = oObject.GetFileType();

GetObjectByID (Static Method)
This API will get a content object from the specified ID.

Developer's Reference Guide | 125

BP Logix Inc
Process Director Documentation

Parameters
BP: The Process Director BP Object
ID: The ID of the object to retrieve

Returns
ContentObject:Will return null if object isn't found.

Example

// Normally not used directly
var oObject = ContentObject.GetObjectByID(bp, "OID");

GetObjectByPathName (Static Method)
This API will get an object by its path.

Parameters
BP: The Process Director BP Object.
PartitionID: The Partition ID or name.
PathName: The complete path to the object to return.

Returns
ContentObject: The actual object or null if not found.

Example

// Get the Process Timeline named “My Timeline” in the folder
named "My Project"
// located in the "Partition1" partition.
var myTimeline = ContentObject.GetObjectByPathName(bp, "Par-
tition1",
 "/My Project/My Timeline");

GetPermissions
This API will return the permissions of the object. This is an overloaded method
with the following possible declarations:
public static List<PermObject> GetPermissions(bp BP, string ID)

public List<PermObject> GetPermissions()

Parameters
BP: The Process Director BP Object.

126 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

ID: The ID of the object from which to retrieve permissions.

Returns
List<PermObject>: The list of permission records for the selected object.

Example

var oObject = Form.GetFormByFORMID("FORMID");
var PermList = oObject.GetPermissions();

GetProcess
This API will return the the process associated with a content object. This method is
useful when you know the ID of a content object, such as a Form, but don't know
the process with which the form is associated. This method will return either a
Workflow or Project (Process Timeline) object, or null if the string ID of the content
object isn't found. This is an overloaded method with the following possible declar-
ations:
public Process GetProcess()

public Process GetProcess(string idProc)

Parameters
idProc: The string ID of the content object for which you wish to return the asso-
ciated process.

Returns
Workflow or Project (Process Timeline) object: The process object associated
with the idProc used as the input parameter.

Example
If a content object is ised in a single process, you can return the process without
passing any parameters. In the sample below, a form is identified, then used to
return the process associated with the form:

var form = Form.GetFormByFORMINSTID(bp, "FORMINSTID");
var proc = form.GetProcess();

If your content object is used in multiple processes, you'll need to pass the Pro-
cessID as a parameter:

var form = Form.GetFormByFORMINSTID(bp, "FORMINSTID");
var proc = form.GetProcess("PRID");

Developer's Reference Guide | 127

BP Logix Inc
Process Director Documentation

IsCatAssigned
This API checks to see if an object has been assigned to a given Meta Data cat-
egory. This is an overloaded method with the following possible declarations:
public bool IsCatAssigned(string Category)

public static bool IsCatAssigned(bp BP, string ID, string Cat-
egory)

Parameters
BP: The Process Director BP Object.
ID: The ID of the ContentObject to check.
Category: The string name of the category to check.

Returns
boolean: True if the object is assigned to the given Meta Data Category.

Example

var oObject = Form.GetFormByFORMID("FORMID");
oObject.IsCatAssigned("CategoryName");

MoveObject
This API will move the Content Object to a new destination. This is an overloaded
method with the following possible declarations:
public bool MoveObject(string DestinationID, ObjectType Destin-
ationObjectType)

public bool MoveObject(string DestinationID)

public bool MoveObject(ContentObject oDest)

Parameters
DestinationID: The ID of the Content Object to move into.
DestinationObjectType: The Type of the Content Object to move into. (optional
parameter)
oDest: The Content Object of the destination to which to move the object

Returns
boolean: True if the operation succeeds.

128 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

var oObject = Form.GetFormByFORMID("FORMID");
oObject.MoveObject("1234");

RemoveCategory
This API removes an object from a given Meta Data category. This is an overloaded
method with the following possible declarations:
public bool RemoveCategory(string Category)

public static bool RemoveCategory(bp BP, string ID, string Cat-
egory)

Parameters
BP: The Process Director BP Object.
ID: The ID of the ContentObject to check.
Category: The string name of the category to check.

Returns
boolean: True if the method succeeds.

Example

var oObject = Form.GetFormByFORMID("FORMID");
oObject.RemoveCategory("CategoryName");

RemoveObjectFromParent
This API will remove the Content Object from its parent. This is an overloaded
method with the following possible declarations:
public bool RemoveObjectFromParent()[Deprecated]
public bool RemoveObjectFromParent(ContentObject pParent)

public bool RemoveObjectFromParent (ContentObject pParent,
bp.eMapType pMapType)

public bool RemoveObjectFromParent(string pParentID)

public bool RemoveObjectFromParent(string pParentID, bp.eMapType
pMapType)

Developer's Reference Guide | 129

BP Logix Inc
Process Director Documentation

Parameters
pParent: The parent ContentObject.
eMapType : The relationship Map Type between the child and parent objects.
pParentID: The string ID of the parent object.

Returns
boolean: True if the operation succeeds.

Example

var oObject = Form.GetFormByFORMINSTID(bp, "FORMINSTID");
oObject.RemoveObjectFromParent(pParentObject);

RemovePermissions
This API will remove all permissions for the object. Typically you'll then add per-
missions with the SetPermissions API. This is an overloaded method with the fol-
lowing possible declarations:
public bool RemovePermissions()

public static bool RemovePermissions(bp BP, string ID)

public bool RemovePermissions(Group group)

public bool RemovePermissions(User user)

public bool RemovePermissions(string ID)

Parameters
BP: The Process Director BP Object
ID: The ID of the object from which to remove permissions.
Group: The Group object from which to remove permissions.
User: The user object from which to remove permissions.

Returns
boolean: True if the operation succeeds.

Example

var oObject = Form.GetFormByFORMID(bp, "FORMID");
oObject.RemovePermissions(); // Remove all permissions to this
object

130 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

ReplicatePermsToChildren
This API will replicate all permissions for the object to all children of the object. This
is an overloaded method with the following possible declarations:
public bool ReplicatePermsToChildren()

public static bool ReplicatePermsToChildren(bp BP, string ID)

Parameters
BP: The Process Director BP Object
ID: The ID of the object from which to remove permissions.

Returns
boolean: True if the operation succeeds.

Example

var oObject = Form.GetFormByFORMID(bp, "FORMID");
oObject.ReplicatePermsToChildren();

ReplicatePermsToChildrenAndForms
This API will replicate all permissions for the object to all children of the object.
Additionally, if any of the children are form instances, the permissions will be rep-
licated to their children as well. This is an overloaded method with the following
possible declarations:
public bool ReplicatePermsToChildrenAndForms()

public static bool ReplicatePermsToChildrenAndForms(bp BP, string
ID)

Parameters
BP: The Process Director BP Object
ID: The ID of the object from which to remove permissions.

Returns
boolean: True if the operation succeeds.

Example

var oObject = Form.GetFormByFORMID(bp, "FORMID");
oObject.ReplicatePermsToChildrenAndForms();

Developer's Reference Guide | 131

BP Logix Inc
Process Director Documentation

SetAttribute
This API will set a specific attribute in the object’s Meta Data. This is an overloaded
method with the following possible declarations:
public bool SetAttribute (string Category, string Attribute,
string Value)

public bool SetAttribute (string Category, string Attribute,
DataItem Value)

public static bool SetAttribute (bp BP, string ID, string
Category,
 string Attribute,

string Value)

public static bool SetAttribute (bp BP, string ID, string
Category,
 string Attribute,
 DataItem Value)

public static bool SetAttribute(bp BP, string ID, string ATTID,
string Value)

public static bool SetAttribute(bp BP, string ID, string ATTID,
DataItem Value)

Parameters
BP: The Process Director BP Object
ID: The ID of the object from which to remove permissions.
Category: The Category of the Attribute to set.
Attribute: The Attribute name to set.
Value: The string or DataItem to assign to the Attribute.
ATTID: The ID of the attribute from which to remove permissions.

Returns
boolean: True if the operation succeeds.

Example

var oObject = Form.GetFormByFORMID(bp, "FORMID");
oObject.SetAttribute("Category 1.Category 2", "Attribute

132 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Name", "1");

SetAttributes
This API will set a list of attributes in the object’s Meta Data. This is an overloaded
method with the following possible declarations:
public bool SetAttributes(List<NameValue> Attributes)

public static bool SetAttributes (bp BP, string ID,
 List<NameValue> Attributes)

public bool SetAttributes(List<NameValueEx> Attributes)

public static bool SetAttributes (bp BP, string ID,
 List<NameValueEx> Attributes)

Parameters
BP: The Process Director BP Object
ID: The ID of the object from which to remove permissions.
Attributes: A list of NameValueEx objects where the Name specifies the Cat-
egory.Attribute name, and the Value specifies the value to set.

Returns
boolean: True if the operation succeeds.

Example

MetaCategory myCat = GetCategory(bp, "PID", "Category 1");
var oObject = Form.GetFormByFORMID(bp, "FORMID");
var atts = myCat.GetAttributes("Category 1.Category 1A");
foreach(var att in atts)
{
 var name = att.Name;
 var val = att.Value;
}
oObject.SetAttributes(atts);

SetExternalAttribute
This API will set a Meta Data attribute for an object based on the external name.
This is an overloaded method with the following possible declarations:
public bool SetExternalAttribute (string ExternalName, string
Value)

Developer's Reference Guide | 133

BP Logix Inc
Process Director Documentation

public static bool SetExternalAttribute (bp BP, string ID,
 string ExternalName,
 string Value)

Parameters
BP: The Process Director BP Object
ID: The ID of the object to which to set the attribute.
ExternalName: The string value for the external name to use for the attribute
name.
Value: The string value of the Attribute to set.

Returns
boolean: True if the operation succeeds.

Example

var oObject = Form.GetFormByFORMID(bp, "FORMID");
oObject.SetExternalAttribute("ExternalName", "ValueToSet");

SetExternalAttributes
This API will set Meta Data attributes for an object based on a list of external
names. This is an overloaded method with the following possible declarations:
public bool SetExternalAttributes(List<NameValue> MetaData)

public static bool SetExternalAttributes (bp BP, string ID,
 List<NameValue>
MetaData)

Parameters
BP: The Process Director BP Object
ID: The ID of the object to which to set the attributes.
MetaData: A list object consisting of Name/Value pairs.

Returns
boolean: True if the operation succeeds.

134 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

List<NameValue> atts = new List<NameValue>();
atts.Add("Attr1");
atts.Add("Attr2");
var oObject = Form.GetFormByFORMID(bp, "FORMID");
oObject.SetExternalAttributes(atts);

SetGroupName
This API will set the group that the object is in.

Parameters
GroupName: The group for this object.

Returns
boolean: True if the operation succeeds.

Example

var oObject = Form.GetFormByFORMID(bp, "FORMID");
oObject.SetGroupName("My Group");

SetMetaData
This API will set the Meta Data categories and attributes for an object using an XML
string. This is an overloaded method with the following possible declarations:
public bool SetMetaData(string MetaData)

public static bool SetMetaData(bp BP, string ID, string XML_Data)

Parameters
MetaData: The XML String containing the Meta Data information.
BP: The BP Logix environment.
ID: The ID of the object for which the Meta Data is to be set..
XML_Data: The XML String containing the Meta Data information.

Returns
boolean: True if the operation succeeds.

Developer's Reference Guide | 135

BP Logix Inc
Process Director Documentation

Example

var oObject = Form.GetFormByFORMID(bp, "FORMID");

//Make the XML String for the Meta Data
StringBuilder sb = new StringBuilder();
sb.Append("<?xml version=\"1.0\" encoding=\"utf-8\"?>");
sb.Append("<META_DATA xmlns:xsi=");
sb.Append("\"http://www.w3.org/2001/XMLSchema-instance\"");
sb.Append
("xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\">\"");
sb.Append("<INPUT_META_DATA>");
sb.Append("<ATTRIB_NAME>Cat 1.Cat 2.Attrib 1</ATTRIB_NAME>");
sb.Append("<META_VALUE>Value 1</META_VALUE>");
sb.Append("</INPUT_META_DATA>");
sb.Append("<INPUT_META_DATA>");
sb.Append("<ATTRIB_NAME>Cat 1.Cat 2.Attrib 2</ATTRIB_NAME>");
sb.Append("<META_VALUE>Value 2</META_VALUE>");
sb.Append("</INPUT_META_DATA>");
sb.Append("</META_DATA>");

//Set Meta Data
oObject.SetMetaData(sb.ToString());

SetPermissions
This API will set permissions available on the object for a specific User or Group of
Users. This is an overloaded method with the following possible declarations:
public bool SetPermissions(User GrantUser, bool PermView, bool
PermModify,
 bool PermDelete, bool PermRun)

public bool SetPermissions(Group GrantGroup, bool PermView, bool
PermModify,
 bool PermDelete, bool PermRun)

public bool SetPermissions(string GrantID, ObjectType GrantType,
 bool PermView, bool PermModify,
 bool PermDelete, bool PermRun)

public bool SetPermissions (string Partition, string GrantID,
ObjectType GrantType, bool PermView,

 bool PermModify, bool PermDelete, bool
PermRun)

136 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

public static bool SetPermissions(bp BP, string ID, string PID,
 string GrantID,
 ObjectType GrantType,
 bool PermView,
 bool PermModify,
 bool PermDelete, bool PermRun)

Parameters
User/Group: The User or Group for which to set the permissions on the object.
PermView:Whether or not the user will have View permission on the object.
PermModify:Whether or not the user will have Modify permission on the object.
PermDelete:Whether or not the user will have Delete permission on the object.
PermRun:Whether or not the user will have Run permission on the object.
BP: The Process Director BP Object
ID: The string ID of the Process Director object whose permissions should be set.
PID: The partition ID of the partition where the object resides.
GrantID: The string ID of the user/group for whom permissions should be added.
GrantType: The GrantType object of the permissions.

Returns
boolean: True if the operation succeeds.

Example

var user = User.GetUserByUserID(bp, "User 1");
var oObject = Form.GetFormByFORMID(bp, "FORMID");
// Grant “User 1” permission to view, modify, or run the
object
// (but not to delete it)
oObject.SetPermissions(user, true, true, false, true);

// Grant the “Finance” group view permissions only
var group = Group.GetGroupByName(bp, "Finance");
oObject.SetPermissions(group, true, false, false, false);

SetPermissionsEx
This API will set permissions available on the object for a specific User or Group of
Users.

Developer's Reference Guide | 137

BP Logix Inc
Process Director Documentation

public static bool SetPermissionsEx (bp BP, string ID,
 string PID,
 string GrantID,

ObjectType GrantType,
 short PermView,
 short PermModify,
 short PermDelete,
 short PermRun)

Parameters
BP: The Process Director BP Object
ID: The string ID of the Process Director object whose permissions should be set.
PID: The partition ID of the partition where the object resides.
GrantID: The string ID of the user/group for whom permissions should be added.
GrantType: The Value of the Perm.GrantType object.
PermView:Whether or not the user will have View permission on the object.
PermModify:Whether or not the user will have Modify permission on the object.
PermDelete:Whether or not the user will have Delete permission on the object.
PermRun:Whether or not the user will have Run permission on the object.

Returns
boolean: True if the operation succeeds.

Example

var granttype= TempPerm.GrantType;
var oObject = Form.GetFormByFORMID(bp, "FORMID");
// Grant “User 1” permission to view, modify, or run the
object
// (but not to delete it)
oObject.SetPermissionsEx(bp, "IDValue", "PartitionID",
"GrantID",

granttype, 1, 1, 0, 1);

UpdateObject
This API will update the name and description properties in the database

Parameters
none

138 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Returns
boolean: True if the operation succeeds.

Example

var oObject = Form.GetFormByFORMID(bp, "FORMID");
oObject.UpdateObject();

DataSource Class
This object represents a database DataSource which contains the connection
details to connect to a database. The Provider and Connection can be used with
native ADO.NET calls to connect to external databases.
This object is derived from the ContentObject class. All properties and methods
from the ContentObject are supported for this object, plus the properties below.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

Provider String The Provider string of this
connection.

Connection String The connection string for
this SQL connection.

DBType String The optional type of data-
base.

Methods
CacheCount (Static Method)
This API will return the number of items in the Datasource cache.

Parameters
DSID: The string ID of the DataSource.

Returns
Integer: The Number of items in the cache.

Developer's Reference Guide | 139

BP Logix Inc
Process Director Documentation

Example

int count = DataSource.CacheCount("DSID");

ClearCache (Static Method)
This API will remove all items from the Datasource cache.

Parameters
DSID: The string ID of the DataSource.

Returns
Boolean: Returns "true" if the operation succeeds.

Example

bool cleared = DataSource.ClearCache("DSID");

GetDataSourceByDSID (Static Method)
This API will get a DataSource object from the specified ID.

Parameters
BP: The Process Director BP Object
DSID: The ID of the DataSource to retrieve.

Returns
DataSource:Will return null if Datasource isn't found.

Example

// Normally not used directly
var oDS = DataSource.GetDataSourceByDSID(bp, "DSID");

GetDataSourceByName (Static Method)
This API will get a DataSource object from the specified ID.

Parameters
BP: The Process Director BP Object
Name: The name of the DataSource to retrieve.

Returns
DataSource:Will return null if Datasource isn't found.

140 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

// Get the Datasource to my ERP system
var oDS = DataSource.GetDataSourceByName(bp, "ERP System");

DocumentObject Class
This object represents a Document.
This object is derived from the ContentObject class. All properties and methods
from the ContentObject are supported for the Document object, plus the prop-
erties below.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

FileType String The file extension of the
document

DOS_FileName String The DOS “friendly” file
name of the document

CheckedOut Boolean Is the document currently
checked out?

CheckedOutUID String If this document is checked
out, the UID of the user

FilePath String This property will return
the physical file path of an
attachment that is stored
on the file system. This
property will return no
value if the document is
stored in the Process Dir-
ector database.

WebViewableOID String The OID of the optional
web viewable object

ManagedOID String The OID of the actual doc-
ument object

Developer's Reference Guide | 141

BP Logix Inc
Process Director Documentation

Methods
CreateThumbnail
This method implements a simple routine that creates a thumbnail image of the
first page of a document.

Parameters
BP: The Process Director BP Object.
DID: The ID of the document to retrieve.

Returns
N/A

Example

BPLogix.WorkflowDirector.SDK.Document.CreateThumbnail(bp,
"DID");

GetBytes
This API will return the bytes for a document.

Parameters
None

Returns
byte:Will return null if document isn't found.

Example

byte[] DocBytes = Document.GetBytes();

GetDocumentByDID (Static Method)
This API will get a document object from the specified ID.

Parameters
BP: The Process Director BP Object.
DID: The ID of the document to retrieve.

Returns
Document:Will return null if document isn't found.

142 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

// Normally not used directly
var oDocument = Document.GetDocumentByDID(bp, "DID");

GetStream
This API will return the stream for a document.

Parameters
None

Returns
stream:Will return null if document isn't found.

Example

stream DocBytes = Document.GetStream();

RemoveThumbnail
This method implements a simple routine that removes a thumbnail image.

Parameters
BP: The Process Director BP Object.
DID: The ID of the document to retrieve.

Returns
N/A

Example

BPLogix.WorkflowDirector.SDK.Document.RemoveThumbnail(bp,
"DID");

SetDocReviewable
This API will set the web viewable object for a document

Parameters
SourcePath: The full path to the local file system of the web viewable object.

Returns
Boolean: True if the operation succeeds.

Developer's Reference Guide | 143

BP Logix Inc
Process Director Documentation

Example

BPLogix.WorkflowDirector.SDK.Document.SetDocReviewable("c:\\Im-
port\\File.pdf");

UpdateDocData
This API enables you to set or replace the contents of a documen.

Parameters
pData: The Stream object to be updated.
Description (Optional): The String description of the new document data.

Returns
Boolean: True if the operation succeeds.

Example
This example overwrites a document in the Content List from a document stored in
a local file system.

Document doc = Document.GetDocumentByDID(bp, "DID")
Stream pData = File.Open("C:\Filepath\file.txt",
FileMode.Open);
doc.UpdateDocData(pData);

WriteDocumentToDisk
This API will write the document to a local file.

Parameters
DestPath: The full path of the local output file.

Returns
Boolean: True if the operation succeeds.

Example

Document oDocument = Document.GetDocumentByDID(bp, "DID")
oDocument.WriteDocumentToDisk("c:\\Documents\\SavedDoc.docx");

Dropdown Object Class
This object is derived from the ContentObject class. This object represents a Con-
tent Object of the DropDown type. It contains a list of name/value pairs which can

144 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

fill a DropDown on a Form.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

Values List Object The list of name/value pairs
for the dropdown as a
List<DropDownValue> class

DDID String The DropDown ID of the
DropDown Content Object
(same as ID property)

Methods
GetDropDownByDDID (Static Method)
This API will return a DropDownObject which corresponds to the ID you pass it.

Parameters
BP: The Process Director BP Object.
DDID: The ID of the Dropdown Object to retrieve

Returns
DropDownObject: An instance of the DropDownObject, or null if no DropDown
could be found.

Example

var cDD = CurrentForm.FormControl("DropDownPick").Value;
// if "DropDownPick" is a ContentPicker on a Form
var dd = DropDownObject.GetDropDownByDDID(bp, cDD);
// Now we can use dd for our DropDownObject
bp.log0("Number of entries in the DropDown: " + dd.Val-
ues.Count);

SetDropDownValues
This API sets the list of DropDown name/value pairs.

Parameters
Values: The list of name/value pairs for the DropDown as a List<DropDownValue>
(or other IEnumerable) class.

Developer's Reference Guide | 145

BP Logix Inc
Process Director Documentation

Returns
Boolean:Whether or not the call could set the DropDownObject's values.

Example

var ddvlist = new List<DropDownValue>();
ddvlist.Add(new DropDownValue("[Select a State]", ""));
ddvlist.Add(new DropDownValue("California", "CA"));
ddvlist.Add(new DropDownValue("Texas", "TX"));
var cDD = CurrentForm.FormControl("DropDownPick").Value;
// If "DropDownPick" is a ContentPicker on a Form
var dd = DropDownObject.GetDropDownByDDID(bp, cDD);
dd.SetDropDownValues(ddvlist);
// Will set DropDown to contain:
// "[Select a State]:''",
// "California:CA",
// "Texas:TX"

DropdownValue Object Class
This object represents a single name/value pair for use in a DropDown and similar
controls.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

Text String The text to display for the
DropDown entry

Value String The actual value to use
when using the DropDown
entry

Methods
GetDropDownValues (Static Method)
This API will return the list of name/value pairs for a dropdown as a
List<DropDownValue> class.

Parameters
BP: The Process Director BP Object
DDID: The ID of the DropDown Object from which to retrieve the DropDownValue
List.

146 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Returns
List<DropDownValue>: The list of name/value pairs for the DropDown.

Example

var cDD = CurrentForm.FormControl("DropDownPick").Value;
// If "DropDownPick" is a ContentPicker on a Form
var ddlist = DropDownValue.GetDropDownValues(bp, cDD);
bp.log0("Number of entries in the DropDown: " + ddlist.Count);

SetDropDownValues
This API sets the list of DropDown name/value pairs.

Parameters
Values: The list of name/value pairs for the DropDown as a List<DropDownValue>
(or other IEnumerable) class.

Returns
Boolean:Whether or not the call could set the DropDownObject's values.

Example

var ddvlist = new List<DropDownValue>();
ddvlist.Add(new DropDownValue("[Select a State]", ""));
ddvlist.Add(new DropDownValue("California", "CA"));
ddvlist.Add(new DropDownValue("Texas", "TX"));
var cDD = CurrentForm.FormControl("DropDownPick").Value;
// if "DropDownPick" is a ContentPicker on a Form
var dd = DropDownObject.GetDropDownByDDID(bp, cDD);
dd.SetDropDownValues(ddvlist);
// Will set DropDown to contain
// "[Select a State]:''",
// "California:CA",
// "Texas:TX"

Constructor
Parameters
Text: The text to display for the DropDown entry
Value (Optional): The actual value to use when using the DropDown entry. If the
constructor doesn't receive this parameter, it will use the 'Text' parameter for the
Value as well.

Developer's Reference Guide | 147

BP Logix Inc
Process Director Documentation

Example

// Create a value with Text:"[Select a Value]" and Value:""
var ddv1 = new DropDownValue("[Select a Value]", "");

// Creates a value with Text:"Item1" and Value:"Item1"
var ddv2 = new DropDownValue("Item1");

// Creates the same DropDownValue as above ("Item1"/"Item1")
var ddv3 = new DropDownValue("Item1", "Item1");

Excel Class
This object represents an Excel document object.

Methods
GetValueByCell
Returns a cell value from an Excel Spreadsheet. This is an overloaded method with
the following possible declarations:
public static string GetValueByCell (bp BP, string ExcelPath,
string CellName)

public static string GetValueByCell(bp BP, Stream ExcelStream,
string CellName)

Parameters
bp: The BP Logix Object.
ExcelPath: The file system path string to the Excel file.
ExcelStream: The stream object containing the stream of the Excel file.
CellName: The string name of the cell location.

Returns
List: A string value from the cell.

Example

string ExcelValue = Excel.GetValuesByCell(bp, "C:\\FilePath",
"R1C2");

GetValuesByCell

148 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Returns a List object containing cell values for a given number of rows in an Excel
spreadsheet. This is an overloaded method with the following possible declar-
ations:
public static List<string> GetValuesByCell (bp BP, string
ExcelPath,
 string CellName, int
pRows)

public static List<string> GetValuesByCell (bp BP, Stream
ExcelStream,
 string CellName, int
pRows)

Parameters
bp: The BP Logix Object.
ExcelPath: The file system path string to the Excel file.
ExcelStream: The stream object containing the stream of the Excel file.
CellName: The string name of the cell location.
pRows: The integer number of rows to return.

Returns
List: A list object containing the string values from the cell rows.

Example

// Return the values from four rows in the excel file.
List ExcelValues = Excel.GetValuesByCell(bp, "C:\\FilePath",
"R1C2", 4);

GetValueByRangeName
Returns a List object containing cell values for a given number of rows in an Excel
spreadsheet. This is an overloaded method with the following possible declar-
ations:
public static string GetValueByRangeName(bp BP, string ExcelPath,
 string RangeName)

public static string GetValueByRangeName (bp BP, Stream
ExcelStream,
 string RangeName)

Developer's Reference Guide | 149

BP Logix Inc
Process Director Documentation

Parameters
bp: The BP Logix Object.
ExcelPath: The file system path string to the Excel file.
ExcelStream: The stream object containing the stream of the Excel file.
RangeName: The named range from which to pull the value.

Returns
List: A list object containing the string values from the cell rows.

Example

string ExcelValue = Excel.GetValueByRangeName(bp,
"C:\\FilePath",
 "NamedRange");

GetValuesByRow
Returns a List object containing cell values for a given row in an Excel spreadsheet.

Parameters
bp: The BP Logix Object.
Stream: The stream object containing the stream of the Excel file.
pRow: The integer row number from which to pull the values.

Returns
List: A list object containing the string values from the row.

Example

string ExcelValue = Excel.GetValuesByRow(bp, [StreamObject],
[RowInteger]);

Folder Class
This object represents a Folder, and is derived from the ContentObject class. All
properties and methods from the ContentObject are supported for this object, plus
the properties below.

150 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

ID String The ID of this specific form instance

Name String The text name of this specific form
instance

PID String The Partition ID of the partition where
this form resides

CreateTime DateTime The date/time of this specific form
instance’s creation

UpdateTime DateTime The most recent date/time that a user
changed this specific form instance

CreateUID String The User ID of the user which created
this specific form instance

UpdateUID String The User ID of the user who most
recently update this specific form
instance

Methods
CreatePath (Static Method)
This API will create the complete folder path for the specific input.

Parameters
BP: The Process Director BP Object
PartitionID: The ID of the partition to use.
Path: The complete path to of the folder structure to create.

Returns
Folder: The newly created folder.

Example

// Normally not used directly
var oFolder = Folder.CreatePath(bp, CurrentPartition, "/folder-
1/folder2");

CreateNewFolder (Static Method)

Developer's Reference Guide | 151

BP Logix Inc
Process Director Documentation

This API will create a new folder in the specified parent.

Parameters
BP: The Process Director BP Object
ParentID: The ID of the parent.
FolderName: The name of the new folder to create.

Returns
Folder: The newly created folder.

Example

// Normally not used directly
var oFolder = Folder.CreateNewFolder(bp, SomeParentID, "New
Folder");

CreateSubFolder
This API will create a sub folder under the current folder

Parameters
FolderName: The name of the folder to create.

Returns
Folder: The newly created folder.

Example

var oFolder = Folder.CreateNewFolder(bp, SomeParentID, "New
Folder");
var NewFolder = oFolder.CreateSubFolder("Subfolder Name");

GetFolderByID (Static Method)
This API will get a Folder from the specified ID.

Parameters
BP: The Process Director BP Object.
FID: The ID of the folder to retrieve.

Returns
Folder: The actual folder or null if not found.

152 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

Var oFolder = Folder.GetFolderByID (bp, "FolderID");

GetFolderByPathName (Static Method)
This API will get a Folder object from the specified Folder Path.

Parameters
BP: The Process Director BP Object
PID: The Partition ID or name.
PathName: The complete path of folder to retrieve.

Returns
Folder:Will return null if partition isn't found.

Example

var oFolder = Folder.GetFolderByPathName (bp,
CurrentPartition, "/folder1/folder2");

Form Class
This object represents a Form instance. An instance is a completed Form, or one
that is currently being edited.
When developing Form scripts (in the various callback methods such as BP_Event)
or Timeline scripts, you are automatically given an instance of the “current” Form
with the CurrentForm variable.
This object is derived from the ContentObject class. All properties and methods
from the ContentObject are supported for this object, plus the properties below.

Properties #

PROPERTY NAME DATA TYPE DESCRIPTION

CloseOptions Code Enum This can be set in any form script. This
property can be set to the following:
FormCloseOptions.CancelAndClose
This will cancel the form when script
returns.

Developer's Reference Guide | 153

BP Logix Inc
Process Director Documentation

PROPERTY NAME DATA TYPE DESCRIPTION

FormCloseOptions.SaveAndClose
This will save and close the form when
script returns.
FormCloseOptions.NoneNo Action
(default)

ControlFocus Form Control
Object

This property can be used to set the
focus to a named control after the event
returns. Set this property to null to pre-
vent the focus from being set.
CurrentForm.ControlFocus = Cur-
rentForm.FormControl("Text1");

CreateTime DateTime The date/time of this specific form
instance’s creation

CreateUID String The User ID of the user which created
this specific form instance

CustomOnLoad JavaScript
Function
Name

Enables you to specify a block of custom
JavaScript to run in the OnLoad event of
the Form.
For example, in an HTML Code control
on the Form, you might specify the
JavaScript to run, then set the Cus-
tomOnload property as follows in the
Raw HTML property of the control:

<script>
function loadAlert ()
{
 alert("Hello, World!")
}

CustomOnLoad = loadAlert();
</script>

154 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

PROPERTY NAME DATA TYPE DESCRIPTION

As always, when using
JavaScript, ensure the HTML Code
control's name is blank, to pre-
vent Process Director from trying
to interpret the curly brackets as
a system variable.

In this example, the code above will dis-
play the alert box when the form loads.

DOCTYPE_HTML Boolean If set to true will use HTML rather than
XHTML

DOCTYPE_HTML5 Boolean If set to true will use HTML rather than
XHTML

FormCase Case Instance
Object

Returns the Case instance associated
with a Form instance, e.g.:
var currCase = Cur-
rentForm.FormCase;

FORMID String The ID of the Form Definition for this
instance

FORMINSTID String The optional ID of the Form instance

FormPartition Partition
Object

Set to the Partition object of the Forms
partition

ID String The ID of this specific form instance

Name String The text name of this specific form
instance

PID String The Partition ID of the partition where
this form resides

ReturnNullsForErrors Boolean If set to true, APIs such as FormControl
will return a null if the form control isn't
found. Otherwise an empty class will be

Developer's Reference Guide | 155

BP Logix Inc
Process Director Documentation

PROPERTY NAME DATA TYPE DESCRIPTION

returned. The default is false.

SkipSetFocus Boolean Skips the set focus event.

UpdateTime DateTime The most recent date/time that a user
changed this specific form instance

UpdateUID String The User ID of the user who most
recently update this specific form
instance

Methods #
AddErrorMessage
This API will add an error message to the form which will be displayed to the user.
If an error message is added, the user won't be able to submit the form. This is an
overloaded method with the following possible declarations:
public void AddErrorMessage (FormMessageString pMessage,
 params object[] pParams)

public void AddErrorMessage (string pFormat, params object []
pParams)
public T AddErrorMessage<T>(T ret, string pFormat, params object
[] pParams)

public T AddErrorMessage<T>(T ret, FormMessageString pMessage,
 params object[] pParams)

Parameters
pMessage: The error message to return (this can be a string or the FormMes-
sageString class).
pFormat: The format string for the error message.
pParams: A parameters object containing the message parameters.

Returns
None

156 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

// This example will be called in the validation event of a
form script
protected override void BP_Validation()
{
 // Display an error on the form if the Amount form field
is > 100
 // and place the focus on the form field “Amount”
 If (CurrentForm.FormControl("Amount").Number > 100)

{
 CurrentForm.AddErrorMessage(new FormMessageString
("Must be < 100", "Amount"));
 }
}

AddInfoMessage
This API will add an informational message to the form which will be displayed to
the user. If an informational message is added, the user won't be able to submit
the form. This is an overloaded method with the following possible declarations:
public void AddInfoMessage (FormMessageString pMessage,
 params object[] pParams)

public void AddInfoMessage (string pFormat, params object []
pParams)

Parameters
pMessage: The error message to return (this can be a string or the FormMes-
sageString class).
pParams: A parameters object containing the message parameters.

Returns
None

Developer's Reference Guide | 157

BP Logix Inc
Process Director Documentation

Example

// This example will be called in every event
protected override void BP_Event()
{

// Display a message on the form if the Amount form field
is > 100
 If (CurrentForm.FormControl("Amount").Number > 100)

{
 CurrentForm.AddInfoMessage("The amount is > 100");
 }
}

AddJavaScript
This API adds a block of JavaScript code to the form.

Parameters
JavaScript: The actual JavaScript code to add.

Returns
None

Examples

// We'll add our JavaScript in the initial load
protected override void BP_ViewStateiInit()
{
 CurrentForm.AddJavaScript("alert('Please submit the form
before
 closing it.')");
}

ClearJavaScript
This API clears all JavaScript code from the form.

Parameters
None.

Returns
None

158 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Examples

// We'll clear our JavaScript in the initial load
protected override void BP_ViewStateiInit()
{
 CurrentForm.ClearJavaScript();
}

AddTopHTML
This API adds a block of HTML code to the top of a form.

Parameters
pHTML: A string value containing the raw HTML code to add to the top of the
page.

Returns
None

Examples

// We'll add our JavaScript in the initial load
protected override void BP_ViewStateiInit()
{
 CurrentForm.AddTopHTML("<p>Hello, World!</p>");
}

AddBottomHTML
This API adds a block of HTML code to the bottom of a form.

Parameters
pHTML: A string value containing the raw HTML code to add to the top of the
page.

Returns
None

Examples

// We'll add our JavaScript in the initial load
protected override void BP_ViewStateiInit()
{
 CurrentForm.AddBottomHTML("<p>Hello, World!</p>");
}

Developer's Reference Guide | 159

BP Logix Inc
Process Director Documentation

ConvertSysVarsInString
This API converts system variables in a string.

Parameters
String: The string in which to find the system variables.
FormControl: (Optional) The form control to reference for control-specific system
variables (e.g. "{ROW_NUM}")

Returns
String: The resultant string after converting every system variable.

Examples

// Returns "USER1 editing this form on 2008-01-01"
bp.log0(CurrentForm.ConvertSysVarsInString("{CURR_USER} edit-
ing this form
 on {CURR_DATE}"));
var cText = CurrentForm.FormControl("Item", 2);

// Returns "Row number: 2"
string result2 = CurrentForm.ConvertSysVarsInString("Row num-
ber: {ROW_NUM}", cText);

CreateDummy
This API creates a dummy copy of an existing form, or of an Array Row, which can
be filled with data attached to a Process Timeline via other APIs. This is an over-
loaded method with the following possible declarations:
public static FormControl CreateDummy(Form form)

public static FormControl CreateDummy(FormControl fcArray, int
row)

Parameters
Form: The Form object to reproduce.
fcArray: An Array control.
row: An Array row.

Returns
None

160 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Examples

Form myForm = CreateDummy(CurrentForm);

DoValidation
This API initiates FormValidation.

Parameters
SkipValidationRules: Boolean to determine whether to skip the validation rules
for the form.
OnlyCheckEventField: Boolean to determine whether to validate only the event
field.

Returns
None

Example

CurrentForm.DoValidation(false, false);

FindControlInForms (Static Method)
This API searches through each field of a given name containing a given value and
returns a list of each form control that matches the query. This is an overloaded
method with the following possible declarations:
public static List<FormControl> FindControlInForms(bp BP, string
FCName,
 string Value)

public static List<FormControl> FindControlInForms(bp BP, string
FCName,
 string FORMID,
 string Value)

Parameters
BP: The BP Object.
FCName: The name of the form controls that will be returned.
FORMID (Optional): The FORMID of the form definition that contains the controls.
Value: The value of the form controls that will be returned.

Developer's Reference Guide | 161

BP Logix Inc
Process Director Documentation

Returns
List: A list object containing the form controls.

Example

List myList = FindControlInForms(bp, "ControlName", "Con-
trolValue");

FormControl
This API will return a single form control. When using arrays, if you retrieve a form
object without specifying a row number, you are acting on the entire column. This
is an overloaded method with the following possible declarations:
public FormControl FormControl(string Name, int ArrayNum)

public FormControl FormControl(string pName, FormControl RefCon-
trol)

public FormControl FormControl (string pName, FormControl
RefArray,
 int ArrayNum)

Parameters
Name: The name of the form control to retrieve.
ArrayNum: (optional) Form controls in an array, the row number of the specific
control
ReturnNullIfNotFound: (optional) If set to true, the API will return a null if the
form control isn't found. If set to false (default), the API will return an empty
FormControl object if it isn't found

Returns
FormControl: The form control instance.

162 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

// Add 1 to the Count form control
CurrentForm.FormControl("Amount").Number += 1;

// Make the Item in row 2 required
CurrentForm.FormControl("Item", 2).Display.Required =
eYNU.Yes;

// Make the entire Description column required
CurrentForm.FormControl("CodeComment").Display.Required =
eYNU.Yes;

FormControls
This API will return the list of all form controls for this form instance.

Parameters
Message: The actual error message to add

Returns
List<FormControl> The list of all form controls for this form instance.

Example

var formControls = BaseCurrentForm.FormControls;

FormControlByID
This API will return a form control which corresponds to the ID you pass it. You
would use this when you have a Form's ID (e.g. from a ControlPicker control). This
is an overloaded method with the following possible declarations:
public FormControl FormControlByID(string FCID)

public FormControl FormControlByID(string FCID, int ArrayNum)

public FormControl FormControlByID (string pFCID, FormControl
RefControl)

Parameters
ArrayNum: (optional) Form controls in an array, the row number of the specific
control
FCID: The ID of the control to retrieve
pFCID: The ID of the control to retrieve

Developer's Reference Guide | 163

BP Logix Inc
Process Director Documentation

RefControl: Optional) The FormControl object to be retrieved

Returns
FormControl: The form control instance.

Examples

var cPicker = CurrentForm.FormControl("CodeComment").Value;
// If "ControlsPick" is a ControlPicker on the Form
// set the form control's text to "Add Another"
CurrentForm.FormControlByID(cPicker).Text = "Add Another";

var cPick2 = CurrentForm.FormControl("CodeComment2").Value;
// Increment the control's value by 1
CurrentForm.FormControlByID(cPick2).Number += 1;
// Disable the whole column of the control
CurrentForm.FormControlByID(cPick2).Display.Enabled = false;

FormNavigate
This API is an override for the base FormNavigate method, and enables you to cre-
ate a custom Form Navigate method.
public virtual void FormNavigate(BPLogix.WorkflowDirector.SDK.bp
bp, string URL)

Parameters
bp: The Process Director SDK handle.
URL: The string value containing the URL to which to navigate.

Returns
None.

Examples

public virtual void FormNavigate(BPLo-
gix.WorkflowDirector.SDK.bp bp, string URL)
{

// Your custom page navigation code here.
}

GetErrorMessages
This API will get the list of all current error messages. The error messages may
have been placed there from the built-in validation, or from messages added from

164 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

script.

Parameters
None

Returns
List<FormMessageString>: The list of form error messages.

Example

// This example will be called after built-in validation has
occurred
protected override void BP_Validation_Post()
{
 var ErrorList = CurrentForm.GetErrorMessages();

// Check to see if there are more than 5 error messages
 if (ErrorList.Count > 5)

{
 CurrentForm.AddInfoMessage("More than 5 errors!");
 }
}

GetFormByFORMID (Static Method)
This API will get a Form object based on the Form ID.

Parameters
BP: The BP environment.
FORMID: The ID of the form to retrieve.

Returns
Form: An instance of the form object, or null if it couldn't be found.

Example

// This example will get a form instance, and log its name
var OtherForm = Form.GetFormByFORMID(bp, "FORMID");
bp.log0("The form name is: " + OtherForm.Name);

GetFormByFORMINSTID (Static Method)
This API will get a Form instance object based on the ID.

Parameters
BP: The BP environment.

Developer's Reference Guide | 165

BP Logix Inc
Process Director Documentation

FORMINSTID: The ID of the form instance to retrieve

Returns
Form: An instance of the form object, or null if it couldn't be found.

Example

// This example will get a form instance, and log its name
var myForm = Form.GetFormByFORMINSTID(bp, "FORMINSTID");
bp.log0("The form instance name is: " + myForm.Name);

GetFormSchema
This API will get an list object containing the form's schema.

Parameters
None.

Returns
List: A list object containing the form's schema.

Example

// This example will get a form schema
List mySchema = Form.GetFormSchema();

GetInfoMessages
This API will get the list of all current informational messages. The info messages
must have been previously added from script.

Parameters
None

Returns
List<FormMessageString>: The list of form error messages.

166 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

// This example will be called immediately prior to displaying
the form
protected override void BP_Display()
{
 var InfoList = CurrentForm.GetInfoMessages();
 foreach (var info in InfoList)

{
bp.log0("INFO MESSAGE: " + info);

 }
}

GetJavaScript
This API gets the current blocks of JavaScript that are added to the form.

Parameters
None

Returns
List<string>: The blocks of JavaScript that will be added to the form.

// This example will get the Form's Javascript
List myJS = Form.GetJavaScript();

Instantiate (Static Method)
This API will instantiate a new form instance. This is an overloaded method with
the following possible declarations:
public static Form Instantiate(bp BP, string FORMID)

public static Form Instantiate (bp BP, string FORMID,
 bool SkipDefaultValues)

Parameters
BP: The bp environment
FORMID: The ID of the form definition to instantiate
SkipDefaultValues: Optional Boolean parameter to tell the Form processor to skip
setting default form values.

Returns
Form: An instance of the form object, or null if it couldn't be found.

Developer's Reference Guide | 167

BP Logix Inc
Process Director Documentation

Example

// This example will create a new form instance
var NewFormInstance = Form.Instantiate(bp, Con-
tentObject.GetObjectByPathName(bp,
 “Partition1”,

“/My Project/My Form Definition”).ID);
bp.log0("The form instance name is: " + NewFormInstance.Name);

RecalcFormInstanceName
This API will force the Form engine to recalculate the form instance name. This
should be used, for example, if you change a form field value that is used in the
instance name programmatically.

Example

CurrentForm.RecalcFormInstanceName();

RowCount
This API returns the number of rows in an array. The API call will only work on an
array control.

Parameters
None

Returns
The number of rows in the array.

Examples

// Save the number of rows in the array named 'MyArray'
int rows = CurrentForm.FormControl("MyArray").RowCount();

SaveAndSubmit
This API will save a form instance (just like SaveForm does), but won't prevent a
process from running if the form submission would normally trigger the start of a
process.

Parameters
None

168 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Returns
None

Example

CurrentForm.SaveAndSubmit();

SaveForm
This API will save the current form irrespective of whether it is being displayed. It
will increment the form internal version number. If this is a new form instance, call-
ing this API won't automatically start a Process Timeline instance associated with
this form definition.

Parameters
None

Returns
None

Example

CurrentForm.SaveForm();

SynchronizeFields
This API will synchronize all form fields marked as synchronized fields to syn-
chronize with other fields of the same name in the specified process. If no process
ID is specified, the process returned by GetProcess() is used by default.

Parameters
pPROCINSTID: An optional parameter containing the string value of the Process
Instance ID.

Returns
None

Example

CurrentForm.SynchronizeFields();

UnlockForm
This API will unlock a Form that has been locked for editing.

Developer's Reference Guide | 169

BP Logix Inc
Process Director Documentation

Use caution when using this API call! If a form is already locked for
editing, and you unlock and edit the form, the locking user may save
their version of the form later, and all of your changes will be over-
written.

Parameters
None

Returns
None

Example

CurrentForm.UnlockForm();

Events #
There are six main types of events that are initiated when using Forms, each of
which will be discussed separately below. Each of these event types contains a
series of individual events that occur in a specific order, called the order of oper-
ations. Developers and implementers have access to the order of operations for
each event type in two different ways: via scripting, or via the use of Custom Tasks.
When each event fires, scripted event procedures are implemented first, then Cus-
tom Tasks associated with the event are implemented. As a result, event scripts
can set values or perform other operations that, when the script is complete, are
available for the Custom Task to use when it is implemented.
Event Types
New Form is opened
When a new form is opened, the following set of events are fired in the order
shown below:

1. BP_FormInitialize Script
2. Form Creation Custom Task
3. BP_ViewStateInit Script
4. View State Init Custom Task
5. BP_Rules Script
6. Before Conditions Custom Task

170 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

7. BP_Rules_Post Script
8. After Conditions Custom Task
9. BP_Display Script
10. Form Display Custom Task

Existing Form is opened
When an existing Form is opened, the following set of events are fired in the order
shown below:

1. BP_ViewStateInit Script
2. View State Init Custom Task
3. BP_Rules Script
4. Before Conditions Custom Task
5. BP_Rules_Post Script
6. After Conditions Custom Task
7. BP_Display Script
8. Form Display Custom Task

When an event is fired from a form control
When a control event is called, the following set of events are fired in the order
shown below:

1. BP_Event Script
2. Event Custom Task
3. BP_Rules Script
4. Before Conditions Custom Task
5. BP_Rules_Post Script
6. After Conditions Custom Task
7. BP_Display Script
8. Form Display Custom Task

When a Form is closed from the OK or task completion but-
ton
When a Form is closed by the OK or other task completion button, the following set
of events are fired in the order shown below:

Developer's Reference Guide | 171

BP Logix Inc
Process Director Documentation

1. BP_Event Script
2. Event Custom Task
3. BP_Rules Script
4. Before Conditions Custom Task
5. BP_Rules_Post Script
6. After Conditions Custom Task
7. BP_Validation Script
8. Before Validation Custom Task
9. BP_Validation_Post Script
10. After Validation Custom Task
11. BP_Completed Script
12. Form Completed Custom Task

When a Form is saved without closing
When a Form is saved, but not closed, the following set of events are fired in the
order shown below:

1. BP_Event Script
2. Event Custom Task
3. BP_Rules Script
4. Before Conditions Custom Task
5. BP_Rules_Post Script
6. After Conditions Custom Task
7. BP_Display Script
8. Form Display Custom Task

When a Form is saved and closed without completing a
task
When a Form is saved and closed without completing a task, the following set of
events are fired in the order shown below:

1. BP_Event Script
2. Event Custom Task
3. BP_Rules Script
4. Before Conditions Custom Task

172 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

5. BP_Rules_Post Script
6. After Conditions Custom Task

FormControl Class
This object represents a single form field.

Form array controls are 1-based, so they always start with row num-
ber 1 (not 0).

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

Name String The name of the form field

FCID String The ID of this form field

Text String The string/text rep-
resentation of the form field’s
value

Value Data type of
Form Field

The raw value of a form field

Number Decimal The numerical representation
of the form field’s value

DateTime DateTime The DateTime object that rep-
resents the form field’s value

DisplayString String This property can be used to
get (but not set) the form con-
trol’s display string.

Checked Boolean This represents whether the
control is checked (true/false,
for Check Box controls only)

Expanded Boolean This represents whether the
control is expanded or col-
lapsed (true/false, for Sec-
tions only)

Developer's Reference Guide | 173

BP Logix Inc
Process Director Documentation

PROPERTY NAME DATA TYPE DESCRIPTION

ClientID String The client-side ID which can
be used by JavaScript to
access the control

IsInArray Boolean True if the control exists
within an array; false oth-
erwise

DDHasItems Boolean This represents if the
DropDown control has items
in it (true/false, for DropDown
controls only)

ColumnChildren List Object A list of controls in an array
column (for Array column con-
trols only)

ArrayFCID String If this control is in an array,
the FCID of the array control

ArrayNum Integer If this control is in an array,
the row number

ArrayName String If this control is in an array,
the name of the array

ArrayControl Form Control
Object

If this control is in an array,
the FormControl of the array

ArrayColumns List Object If this control is an actual
array, the List<FormControl>
of children

Display.EventField Boolean Sets if the control is an event
field (eYNU)

Display.DataType Code Enum Sets the Data Type of the con-
trol (FormEnums.eDataType
enum)

Display.FriendlyName String Sets the friendly name of the
control

174 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

PROPERTY NAME DATA TYPE DESCRIPTION

Display.Visible Boolean Gets or sets if the control is
visible (eYNU)

Display.Enabled Boolean Gets or sets if the control is
enabled (eYNU)

Display.Required Boolean Gets or sets if the control is
required (eYNU)

Display.Style Code Enum Gets or sets the style of the
control

Display.ToolTip String Gets or sets the tooltip for
this control

Display.Control Form Control
Object

Gets the actual ASP.NET Con-
trol of this Form control

Examples

// Sets the control “MyTextBox” as an event field
CurrentForm.FormControl("MyTextBox").Display.EventField =
eYNU.Yes;

// Sets the control “MyTextBox” Friendly Name
CurrentForm.FormControl("MyTextBox").Display.FriendlyName =
 "Your current address";

Methods
AddRow
This API adds a row to an Array

Parameters
At: (Optional) The position to insert the new row. Without this parameter, the API
will add the new row to the end of the Array.

Returns
Integer: The number of rows in the array after the Add

Developer's Reference Guide | 175

BP Logix Inc
Process Director Documentation

Examples

// This will add a row to the beginning of "Array1"
CurrentForm.FormControl("Array1").AddRow(1);

// This will add a row to the end of "Array1"
CurrentForm.FormControl("Array1").AddRow();

AddRowToCommentLog
This API adds a row to a comment log

Parameters
CodeComment: (Optional) The CodeComment for the CommentLog. Not all Com-
ment Log controls use a CodeComment. Specify null for these controls.
Date: The DateTime to be associated with the new comment.
UID: The ID of the user to be associated with the new comment.
Comment: The comment to add.

Returns
Integer: The number of rows in the Comment Log after the Add.

Examples

// This will add a new comment for the current user
CurrentForm.FormControl("ComLog1").AddRowToCommentLog(null,
 DateTime.Now, CurrentUser.UID, "This is my new comment");

AddToDropDown
This API adds an item or list of items to a DropDown control. This is an overloaded
method with the following possible declarations:
public void AddToDropDown(IEnumerable<DropDownValue> DDList)

public void AddToDropDown(DropDownValue DDV, params DropDownValue
[] DDVs)

public void AddToDropDown (IEnumerable<string> ListText,
 IEnumerable<string> ListValues)

public void AddToDropDown(IEnumerable<string> Values)

public void AddToDropDown(string pValue, params string[] Values)

176 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Parameters
DDList: DropDownValue objects or strings to add to the dropdown.
Item1, Item2, Item3, etc.: DropDown items to add to the DropDown control.
ListText: List of Text (name) values (use with ValuesList)
ListValues: List of Values to add to the dropdown (use with ListText)
Values: iEnumerable or Params object containing string values
pValue: String value to add

Returns
None

Examples

// This example will build a DropDownValue list and a name/-
value pair of lists
var ddList = new List<DropDownValue>();
var textList = new List<string>();
var valList = new List<string>();
for(int i = 0; i < 10; i++)
{

ddList.Add(new DropDownValue("Entry " + i, i.ToString()));
textList.Add("Entry " + i);
valList.Add(i.ToString());

}

// Both of the following AddToDropDown calls will add the same
ten entries
CurrentForm.FormControl("Dropdown1").AddToDropDown(ddList);
CurrentForm.FormControl("Dropdown2").AddToDropDown
(textList,valList);

// The next AddToDropDown call will add only the numerical por-
tion to the
// DropDown control
CurrentForm.FormControl("Dropdown3").AddToDropDown(valList);

// Items: 1, 2, 3, 4, etc.
// Add the entries "Item 1", "Item 2", and "Item 3" to the
// DropDown control
CurrentForm.FormControl("Dropdown4").AddToDropDown("Item 1",
"Item 2",
 "Item 3");

ClearDropDown

Developer's Reference Guide | 177

BP Logix Inc
Process Director Documentation

This API removes all of the items from a DropDown control

Parameters
None

Returns
None
Examples

CurrentForm.FormControl("Dropdown1").ClearDropDown();

ClearRows
This API removes all of the rows in an Array control

Parameters
None

Returns
None

Examples

CurrentForm.FormControl("Array1").ClearRows();

ColumnSum
This API adds all of the values in an Array Column control

Parameters
None

Returns
Decimal: The total of each value in the Array Column.

Examples

// Sums up each "Price" field in the Array
decimal tot = CurrentForm.FormControl("Price").ColumnSum();

FillDropDown
This API adds an item or list of items to a DropDown control, but clears the
DropDown first. The API will attempt to re-select the previous value of the

178 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

dropdown control, but won't select it if the value no longer exists in the
DropDown. This is an overloaded method with the following possible declarations:
public void FillDropDown(IEnumerable<DropDownValue> DDList)

public void FillDropDown(DropDownValue DDV, params DropDownValue
[] DDVs)

public void FillDropDown (IEnumerable<string> listText,
 IEnumerable<string> listValues)

public void FillDropDown(IEnumerable<string> values)

public void FillDropDown(string Value, params string[] Values)

Parameters
DDList: DropDownValue objects or strings to add to the dropdown.
Item1, Item2, Item3, etc.: DropDown items to add to the DropDown control.
ListText: List of Text (name) values (use with ValuesList)
ListValues: List of Values to add to the dropdown (use with ListText)
Values: iEnumerable or Params object containing string values

Returns
None

Examples

// This example will build a DropDownValue list and a name/-
value
// pair of lists
var ddList = new List<DropDownValue>();
var textList = new List<string>();
var valList = new List<string>();
for(int i = 0; i < 10; i++)
{

ddList.Add(new FormControl.DropDownValue("Entry " + i,
i.ToString()));

textList.Add("Entry " + i);
valList.Add(i.ToString());

}

// Both of the following AddToDropDown calls will fill the
DropDown with
// the same ten entries
CurrentForm.FormControl("Dropdown1").FillDropDown(ddList);
CurrentForm.FormControl("Dropdown2").FillDropDown(textList,

Developer's Reference Guide | 179

BP Logix Inc
Process Director Documentation

valList);

// The next AddToDropDown call will fill the DropDown with
only the
// numerical portion
// Items: 1, 2, 3, 4, etc.
CurrentForm.FormControl("Dropdown3").FillDropDown(valList);

// Fill the DropDown with the entries "Item 1", "Item 2", and
"Item 3"
CurrentForm.FormControl("Dropdown4").FillDropDown("Item 1",
"Item 2",
 "Item 3");

RemoveRow
This API removes a row in an Array

Parameters
At: (Optional) The position of the row to remove. Without this parameter, the API
will remove the last row in the Array.

Returns
Integer: The number of rows in the array after the Remove.

Examples

// This will remove the first row in "Array1"
CurrentForm.FormControl("Array1").RemoveRow(1);

// This will remove the last row in "Array1"
CurrentForm.FormControl("Array1").RemoveRow();

SelectDropDown
This API selects a value in the DropDown control. The API may add the value if it
doesn't find it, depending on the parameters. This is an overloaded method with
the following possible declarations:
public void SelectDropDown(string Value)

public void SelectDropDown(string Value, string Text)

public void SelectDropDown(string Value, bool AddIfNotFound)

public void SelectDropDown(List<string> Values)

180 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Parameters
AddIfNotFound: (Optional) Whether or not to add an entry in the DropDown if the
API can't find the value (true/false).
Text: (Optional) The text to add if the API can't find the value.
Value: The value to select in the DropDown.
Values: String list of values to select.

Returns
None

Examples

// This example will try to select the value "1", and will add
// "[1]"/"1" (name/value) to the DropDown if the API can't
find
// "1" already in the DropDown
CurrentForm.FormControl("Dropdown1").SelectDropDown("1");

// This example will try to select the value "1", and will add
// "[Item 1]"/"1" (name/value) to the DropDown if the API
can't find
// "1" already in the DropDown
CurrentForm.FormControl("Dropdown2").SelectDropDown("1", "Item
1");

// This example will try to select the value "1", and won't
add
// anything to the DropDown if the API can't find "1" already
in
// the DropDown
CurrentForm.FormControl("Dropdown3").SelectDropDown("1",
false);

SetValue
This function sets the value, though not necessarily the display string, of a form
control.

Parameters
Val: The value for the form control.
sDisplay: (Optional) The string the form control will display

Developer's Reference Guide | 181

BP Logix Inc
Process Director Documentation

Example

CurrentForm.FormControl("ControlName").SetValue("Value");

Sort
This API sorts the rows in an Array. This is an overloaded method with the fol-
lowing possible declarations:
public bool Sort(string PrimaryColumn)

public bool Sort(string PrimaryColumn, string SecondaryColumn)

public bool Sort(string PrimaryColumn, string SecondaryColumn,
 string TertiaryColumn)

public bool Sort(string PrimaryColumn, bool Descending)

public bool Sort(string PrimaryColumn, string SecondaryColumn,
 bool Descending)

public bool Sort(string PrimaryColumn, string SecondaryColumn,
 string TertiaryColumn, bool Descending)

Parameters
PrimaryColumn: The name of the column which is the first sort key
SecondaryColumn: The optional name of the column which is the second sort key
TertiaryColumn: The optional name of the column which is the third sort key
Descending: Optional Boolean if set true will sort rows descending

Returns
None

Examples

// Sort the array
CurrentForm.FormControl("Array1").Sort("ColumnName");

SwapRows
This API exchanges the positions of two rows in an Array

Parameters
RowFrom: The first row number to swap
RowTo: The second row number to swap

182 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Returns
None

Examples

// Swap the 1st row with the 4th
CurrentForm.FormControl("ArrayName").SwapRows(1, 4);

FormMessageString Class
Enables adding a string message to a form.

Properties

PROPERTIES NAME DATA TYPE DESCRIPTION

Text String Message to use on form.

ControlName String Control on form to focus
on.

ArrayNum Integer If in an array specify the
array row number.

Constructor
Parameters
Text:Message to use on form.
ControlName: Control on form to focus on.
ArrayNum: If in an array specify the array row number.

Example

var msg = new FormMessageString("Please provide a name.",
"Name");

Group Class
This object represents a group of users.

Developer's Reference Guide | 183

BP Logix Inc
Process Director Documentation

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

GID String The internal ID of the
group

GroupName String The unique string to
identify the group

Users List Object The list of users which
belong to the group,
returned as a List<User>.

Methods
AddUser
This API adds the specified user to the group. If the user is already in the group, a
note of that will be made in the logs, but the function won't add a duplicate user to
the group. This is an overloaded method with the following possible declarations:
public void AddUser(User User)

public void AddUser(string UID)

Parameters
UID: The ID of the user to add to the group
User: The actual user object to add to the group

Returns
None

Example

var oUser = User.GetUserByUserID(bp, "User 1");
var oGroup = Group.GetGroupByName(bp, "Group 1");

// The following two calls do the same thing
// (add "User 1" to "Group 1")
oGroup.AddUser(oUser); // Call with the User object
oGroup.AddUser(oUser.UID); // Call with the User ID

CreateGroup
This API creates a user group.

184 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Parameters
BP: The bp environment
Name: The name of the group to create

Returns
None

Example

var oGroup = Group.CreateGroup(bp, "Group 1");

Delete
This API will remove the Group from the system.

Parameters
None

Returns
None

Example

var oGroup = Group.GetGroupByName(bp, "Group 1");
oGroup.Delete();

DeleteGroup
This API will remove the Group from the system.

Parameters
BP: The BP Logix environment.
GroupName: The string name of the group to delete.

Returns
Boolean: Returns false of the operation fails.

Example

bool deleted = DeleteGroup(bp, "GroupName");

GetAllGroups (Static Method)
This static method returns a list of all groups on the system.

Developer's Reference Guide | 185

BP Logix Inc
Process Director Documentation

Parameters
BP: The bp environment

Returns
List<Group>: A Group object representation of the group

Example

var allGroups = Group.GetAllGroups(bp);

GetGroupByID (Static Method)
This API will get a group object from the specified ID.

Parameters
BP: The bp environment
ID: The ID of the group to retrieve

Returns
Group: A Group object representation of the group

Example

// Normally not used directly
var oGroup = Group.GetGroupByID(bp, "1234");

GetGroupByName (Static Method)
This API will get a group object from the specified name.

Parameters
BP: The bp environment
Name: The name of the group to retrieve

Returns
Group: A Group object representation of the group

Example

// Get the group named "Group 1"
var oGroup = Group.GetGroupByName(bp, "Group 1");

// Get a list of the users in "Group 1"
var Users = oGroup.Users;

186 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

HasUser
This API checks if the specified user exists in the group. In some situations, it may
be more efficient to view the list of groups to which a specific user belongs, using
the User.Groups property. This is an overloaded method with the following pos-
sible declarations:
public bool HasUser(User User)

public bool HasUser(string UID)

Parameters
UID: The ID of the user to test in the group
User: The actual user object to test in the group

Returns
True/False:Whether or not the specified user exists in the group

Example

var oUser = User.GetUserByUserID(bp, "User 1");
var oGroup = Group.GetGroupByName(bp, "Group 1");

// The following two conditional tests test the same thing
// (is "User 1" in "Group 1")
if(oGroup.HasUser(oUser))
{

// Do action
}
// OR
if(oGroup.HasUser(oUser.UID))
{

// Do action
}

NormalizeGroupList
This API will convert a comma-separated string or DataItem containing a list of
Groups into a normalized List object. This is an overloaded method with the fol-
lowing possible declarations:
public static List<Group> NormalizeGroupList (bp BP, string
pGroupList)

public static List<Group> NormalizeGroupList (bp BP, string
pGroupList,

Developer's Reference Guide | 187

BP Logix Inc
Process Director Documentation

 bool
ReturnNullOnInvalid)

public static List<Group> NormalizeGroupList(bp BP, ref DataItem
pGroups)

public static List<Group> NormalizeGroupList(bp BP, ref DataItem
pGroups,
 bool
ReturnNullOnInvalid)

Parameters
BP: The BP Logix environment.
pGroupList: A string containing a comma-separated list of groups.
pGroups: A DataItem object containing a list of groups.
ReturnNullOnInvalid: A boolean value specifying whether to return a null List
object if the list is invalid.

Returns
List: A List object containing the groups.

Example

var groupList = NormalizeGroupList(bp,
"Group1,Group2,Group3");

RemoveUser
This API will remove the specified user from the group. This is an overloaded
method with the following possible declarations:
public void RemoveUser(User User)

public void RemoveUser(string UID)

Parameters
UID: The ID of the user to remove from the group
User: The actual user object to remove from the group

Returns
None

188 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

var oUser = User.GetUserByUserID(bp, "User 1");
var oGroup = Group.GetGroupByName(bp, "Group 1");
oGroup.RemoveUser(oUser);

MetaCategory Class
This object represents a MetaData Category.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

PID String The Partition ID.

Name String TheName of the Meta Data
category.

CATID String The ID of the Meta Data cat-
egory.

Methods
GetCategory (Static Method)
This API will return a MetaCategory Object for a specified Meta Data Category.

Parameters
BP: The Process Director BP Object
PID: The Partition ID of the partition containing the Meta Data Category.
CATID: A string containing the Name or CATID of the Meta Data Category.

Returns
MetaCategory: A MetaCategory object.

Example

MetaCategory myCat = GetCategory(bp, "PID", "CategoryName");

GetCategoryByID (Static Method)
This API will return a MetaCategory Object for a specified Meta Data Category iden-
tified by CATID.

Developer's Reference Guide | 189

BP Logix Inc
Process Director Documentation

Parameters
BP: The Process Director BP Object
PID: The Partition ID of the partition containing the Meta Data Category.
CATID: A string containing the Name or CATID of the Meta Data Category.

Returns
MetaCategory: A MetaCategory object.

Example

MetaCategory myCat = GetCategoryByID(bp, "PID", "CATID");

GetCategoryByName (Static Method)
This API will return a MetaCategory Object for a specified Meta Data Category iden-
tified by Category Name.

Parameters
BP: The Process Director BP Object
PID: The Partition ID of the partition containing the Meta Data Category.
Name: A string containing the Name or Name of the Meta Data Category.

Returns
MetaCategory: A MetaCategory object.

Example

MetaCategory myCat = GetCategoryByName(bp, "PID", "Cat-
egoryName");

GetCategoryID (Static Method)
This API will accept either a Category name or CATID and return a string containing
the CATID for the specified Category, or "" if the Category isn't found.

Parameters
BP: The Process Director BP Object
PID: The Partition ID of the partition containing the Meta Data Category.
CATID: A string containing the Name or CATID of the Meta Data Category.

190 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Returns
String: The CATID for the specified Category, or "" if the Category isn't found.

Example

string myCat = GetCategoryID(bp, "PID", "CategoryName");

GetRootCategory (Static Method)
This API will return the root-level MetaCategory Object for a specified Partition.

Parameters
BP: The Process Director BP Object
PID: The Partition ID of the partition.

Returns
MetaCategory: A MetaCategory object.

Example

MetaCategory myCat = GetRootCategory (bp, "PID");

Partition Class
This object represents a Partition.
When developing Form scripts (in the various callback methods such as BP_Event),
you are automatically given an instance of the “current” Partition with the Cur-
rentPartition variable.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

PID String The internal Partition ID

Name String The name of this partition

Description String The description of this par-
tition

Methods
CreateFolder
This API will create a folder structure in a Partition

Developer's Reference Guide | 191

BP Logix Inc
Process Director Documentation

Parameters
PathName: The complete path of the folder structure to create.

Returns
Folder: The folder object created.

Example

var NewFolder = CurrentPartition.CreateFolder("/folder-
1/folder2");

GetDataSources
This API will return a list of DataSource objects.

Parameters
none

Returns
List< DataSource>: A list of DataSource objects.

Example

var DataSources = CurrentPartition.GetDataSources();

GetPartition (Static Method)
This API will get a partition from either a name or ID. This is an overloaded method
with the following possible declarations:
public static string GetPartitionID(bp BP, string PID)

public static Partition GetPartition(bp BP, string PartitionID)

public static Partition GetPartitionByID (bp BP, string Par-
titionID)

Parameters
BP: The bp environment.
PartitionID: The Name or ID of the partition to retrieve.
PID: String partition ID of the partition to retrieve.

Returns
Partition:Will return null if partition isn't found.

192 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

var oPartition = Partition.GetPartition(bp, "PID");

GetPartitionByID (Static Method)
This API will get a partition object from the specified ID.

Parameters
BP: The bp environment.
PID: The ID of the partition to retrieve.

Returns
Partition:Will return null if partition isn't found.

Example

// Normally not used directly
var oPartition = Partition.GetPartitionByID(bp, "PID");

GetPartitionByName (Static Method)
This API will get a partition object from the specified Partition Name.

Parameters
BP: The bp environment.
PartitionName: The ID of the partition to retrieve.

Returns
Partition:Will return null if partition isn't found.

Example

var oPartition = Partition.GetPartitionByName(bp, "Par-
titionName");

GetPartitionID (Static Method)
This API will get a partition ID from the specified Partition Name.

Parameters
BP: The bp environment.
PID: The Name or ID of the partition to retrieve.

Developer's Reference Guide | 193

BP Logix Inc
Process Director Documentation

Returns
String: The ID of the Partition or “” if not found.

Example

Var oPID = Partition.GetPartitionID(bp, "PartitionName");

GetRootFolder
This API will return the ContentObject of the root folder for the partition

Parameters
none

Returns
ContentObject: The root folder ContentObject or null if the operation fails.

Example

var RootFolder = CurrentPartition.GetRootFolder();

PDF Class
This object represents a PDF document object.

Methods
CreatePDFForDocument (Static Method)
Creates a reviewable PDF for a specified document. This is an overloaded method
with the following possible declarations:
public static bool CreatePDFForDocument(bp BP, Document Document)

public static bool CreatePDFForDocument(bp BP, Document Document,
 bool OnlyIfNeeded)

Parameters
BP: The BP Logix Object.
pDocument: The Document object to convert to PDF.
OnlyIfNeeded: Booloean flag to instruct the system to only create the conversion
if needed, i.e., If there is already a web viewable object and you only want to con-
vert documents without an existing PDF object.

194 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Returns
Boolean: Returns false if the operation fails.

Example

var oDocument = Document.GetDocumentbyDID(bp, "DID");
CreatePDFForDocument(bp, oDocument);

CreatePDFFromDoc (Static Method)
Creates a PDF file from a specified document.

Parameters
BP: The BP Logix Object.
WordPath: String file path where the Word document is stored.
PDFPath: String file path where the new PDF will be stored.

Returns
Boolean: Returns false if the operation fails.

Example

CreatePDFFromDocument(bp, "C://File/Path/DocumentName.docx",
"C://File/Path/DocumentName.pdf");

CreatePDFFromDocument (Static Method)
Creates a PDF file from a specified document.

Parameters
BP: The BP Logix Object.
Document: The Document object to convert to PDF.
PDFPath: String file path where the new PDF will be stored.

Returns
Boolean: Returns false if the operation fails.

Example

var oDocument = Document.GetDocumentbyDID(bp, "DID");
CreatePDFFromDocument(bp, oDocument, "C://File/Path/Docu-
mentName.pdf");

Developer's Reference Guide | 195

BP Logix Inc
Process Director Documentation

CreatePDFFromForm (Static Method)
Creates a PDF file from a specified Form.

Parameters
BP: The BP Logix Object.
FORMINSTID: The string ID of the Form instance.
PDFPath: String file path where the new PDF will be stored.

Returns
Boolean: Returns false if the operation fails.

Example

CreatePDFFromForm(bp, "FORMINSTID",
 "C://File/Path/DocumentName.pdf");

CreatePDFFromImage (Static Method)
Creates a PDF file from a specified image file. Valid Image formats include GIF, JPG,
and PNG.

Parameters
BP: The BP Logix Object.
ImagePath: The string file path to the location of the image to convert.
PDFPath: String file path where the new PDF will be stored.

Returns
Boolean: Returns false if the operation fails.

Example

CreatePDFFromImage(bp, "C://File/Path/ImageName.png",
 "C://File/Path/DocumentName.pdf");

CreatePDFFromRoutingSlip (Static Method)
Creates a PDF file from a Routing Slip for a specified process.

Parameters
BP: The BP Logix Object.
PROCINSTID: The string ID of the Process instance.

196 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

PDFPath: String file path where the new PDF will be stored.

Returns
Boolean: Returns false if the operation fails.

Example

CreatePDFFromRoutingSlip(bp, "FORMINSTID",
 "C://File/Path/DocumentName.pdf");

CreatePDFFromString (Static Method)
Creates a PDF file from a given text string.

Parameters
BP: The BP Logix Object.
Text: The string to convert.
PDFPath: String file path where the new PDF will be stored.

Returns
Boolean: Returns false if the operation fails.

Example

// Create the string to convert
StringBuilder sb = new StringBuilder();
sb.Append("This is the string. ");
sb.Append("This string will be converted to PDF.");

// Convert the string to PDF
CreatePDFFromString(bp, sb.ToString(),
 "C://File/Path/DocumentName.pdf");

CreatePDFFromTextFile (Static Method)
Creates a PDF file from a specified text file.

Parameters
BP: The BP Logix Object.
TextPath: The string file path to the location of the text file to convert.
PDFPath: String file path where the new PDF will be stored.

Returns
Boolean: Returns false if the operation fails.

Developer's Reference Guide | 197

BP Logix Inc
Process Director Documentation

Example

CreatePDFFromTextFile(bp, "C://File/Path/textfile.txt",
 "C://File/Path/DocumentName.pdf");

CreatePDFFromURL (Static Method)
Creates a PDF file from a web page displayed at a specified URL.

Parameters
BP: The BP Logix Object.
TextPath: The string file path to the location of the text file to convert.
URL: String containing the fully qualified URL of a web page/document.

Returns
Boolean: Returns false if the operation fails.

Example

CreatePDFFromURL(bp, "http://www.domain.com/folder/page.htm",
 "C://File/Path/DocumentName.pdf");

GetFormFields (Static Method)
Retrieves all of the form fields from a PDF document.

Parameters
BP: The BP Logix Object.
PDFPath: The string file path to the location of the PDF file.
(out) pFormFieldNames: List object that will contain the returned PDF form fields.

Returns
Boolean: Returns false if the operation fails.
List: The List object containing all of the form fields in the PDF document.

Example

//The list to store the controls
List<string> myControls = new List<string>();

//Get the form fields to fill the list
GetFormFields(bp, "C://File/Path/DocumentName.pdf",
myControls);

198 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

MergePDFs (Static Method)
Merges multiple PDF files into a single PDF file. This is an overloaded method with
the following possible declarations:
public static bool MergePDFs (bp BP, IEnumerable<string>
InputPDFPaths,
 string OutputPDFPath)

public static bool MergePDFs (bp BP, IEnumerable<string>
InputPDFPaths,
 string OutputPDFPath, bool DeleteIn-
puts)

Parameters
BP: The BP Logix Object.
InputPDFPaths: The IEnumerable object, such as a List, that contains the file paths
of the PDF files to merge.
OutputPDFPath: The file path for the location of the merged PDF.
DeleteInputs: Booloean flag to instruct the system to delete the original PDF files
after they have been merged.

Returns
Boolean: Returns false if the operation fails.

Example

// The list to store the PDF locations
List<string> MyFiles = new List<string>();
MyFiles.Add("C://File/Path/Document1Name.pdf");
MyFiles.Add("C://File/Path/Document2Name.pdf");

// Merge the PDFs
MergePDFs(bp, MyFiles,
"C://File/Path/MergedDocumentName.pdf");

SetFormFields (Static Method)
Sets all of the form fields in a specified PDF document.

Parameters
BP: The BP Logix Object.
PDFPath: The string file path to the location of the PDF file.

Developer's Reference Guide | 199

BP Logix Inc
Process Director Documentation

FieldNameValues: Dictionary object that will contain field Name/Value pairs to fill
out a PDF Form.
TemplatePDFPath: String file path of the Template PDF containing the form fields.
OutputPDFPath: String file path of the PDF output file containing the completed
form after the values are entered.

Returns
Boolean: Returns false if the operation fails.
List: The List object containing all of the form fields in the PDF document.

Example

// The Dictionary to store the controls
Dictionary<string, string> myFields = new Dictionary<string,
string>();
myFields.Add("Field1", "Value1");
myFields.Add("Field2", "Value2");
myFields.Add("Field3", "Value3");

// Create the filled PDF form from the template
SetFormFields(bp, myFields, "C://File/Path/Template.pdf",
 "C://File/Path/Output.pdf");

Process Class
This object represents a Process (definition and/or instance).
This object is derived from the ContentObject class. All properties and methods
from the ContentObject are supported for this object, plus the properties below.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

Attachments List Object Attached files or doc-
uments for the process,
returned as a List<Docu-
ment Object>.

DefaultForm Form Object Default form definition for
the process

DefaultFORMINSTID String Default form instance ID
for the process

200 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

PROPERTY NAME DATA TYPE DESCRIPTION

DueTime DateTime The date/time the process
instance is due

EndTime DateTime The date/time the process
instance ended

Error Boolean Whether the process is in
an error state

Initiator User Object Process initiator

InstanceName DefaultForm Name of the process
instance

InstanceObject Content List
Object

The optional content object
of this process instance

InstID String ID of the process instance

ParentInstanceObject Content List
Object

The optional content object
of the parent process
instance

Priority Integer The priority of the process
instance

RunningTasks List Object List of running tasks in the
process, returned as
List<Task>

StartTime DateTime The date/time the process
instance started

Status Integer Status of the process
instance, specified in the
nStatus field of tblPro-
jectInstance. Please see the
table definition of tblPro-
jectInstance for status
codes.

TermReason Integer If the process instance has

Developer's Reference Guide | 201

Table Definitions.htm

BP Logix Inc
Process Director Documentation

PROPERTY NAME DATA TYPE DESCRIPTION

ended, the reason. Please
see the Classes topic for a
list of termination reasons
and their associated
integer code.

Methods
AddToProcess
Adds a ContentObject object to a Process. This is an overloaded method with the
following possible declarations:
public bool AddToProcess(ContentObject pObj)

public bool AddToProcess(ContentObject pObj, string pGroup)

public bool AddToProcess(string pID)

public bool AddToProcess(string pID, string pGroup)

public bool AddToProcess(string pID, ObjectType pType)

public bool AddToProcess (string pID, ObjectType pType, string
pGroup)

Parameters
pObj: A Process Director ContentObject object.
pGroup: The string name of a Group to which the object should be added.
pID: The string ID of the Object.
pType: The ObjectType of the Object to be added.

Returns
Boolean: True if the operation succeeds.

Example

// Set the Process and content object
var oProcess = Project.GetProcessByID(bp, "PRID");
var oObject = Form.GetFormByFORMID("FORMID");

// Add the object to the process
oProcess.AddToProcess(oObject);

202 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Cancel
This API will cancel a running Process Instance.

Parameters
None.

Returns
Boolean: True if operation succeeds

Example

var oProcessInst = Project.GetProcessByInstID(bp, "PRINSTID");
oProcessInst.Cancel();

CheckForAdvance
This API call will force the internal logic for checking for notifications that need to
be sent out and steps that need to be transitioned.

Parameters
None

Returns
None

Examples

var oProcessInst = Project.GetProcessByInstID(bp, "PRINSTID");
bp.log0(oProcessInst.CheckForAdvance());

ConvertSysVarsInString (Static Method)
This API converts system variables in a string.

Parameters
String: The string in which to find the system variables.
pDefaultEncode: The BP SysVar Encode method.

Returns
String: The resultant string after converting every system variable.

Developer's Reference Guide | 203

BP Logix Inc
Process Director Documentation

Examples

var oProcessInst = Project.GetProcessByInstID(bp, "PRINSTID");
bp.log0(oProcessInst.ConvertSysVarsInString("Created on
{CREATE_DATE}"));

GetChildren
This API will get all children of the Process Instance.

Parameters
ObjectType: Optional filter of object types to return.
MapType: Optional filter of map types to return.
GroupName: Optional filter of items in a Group to return.

Returns
List<ContentObject>: List of ContentObjects or null if the operation fails.

Example

var oProcessInst = Project.GetProcessByInstID(bp, "PRINSTID");
// Gets all items in the group named “Group 1”
var MyChildren = oProcessInst.GetChildren("Group 1");

GetProcessByID
This API will return a process object from the specified ID.

Parameters
BP: The bp environment.
pID: The ID of the object to retrieve.

Returns
ProcessObject:Will return null if object isn't found.

Example

// Normally not used directly
var oObject = Project.GetProcessByID(bp, "PRID");

GetProcessByInstID
This API will return a process object from the specified ID.

204 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Parameters
BP: The bp environment.
pInstID: The ID of the process instance object to retrieve.

Returns
ProcessInstanceObject:Will return null if object isn't found.

Example

// Normally not used directly
var oObject = Process.GetProcessByInstID(bp, "PRINSTID");

GetSubProcesses
This API will return all sub-processes.

Parameters
None

Returns
Process: List of sub processes.

Example

var SubProcess = CurrentProject.GetSubProcesses();
foreach (var sub in SubProcess)
{

bp.log0("Sub process: " + sub.Name);
}

GetTaskByName
This API will get the specified ProcessTask.

Parameters
pTaskName: The name of the Process Task to get.

Returns
ProcessTask: The actual ProcessTask or null if the operation fails.

Example

var oProcess = Project.GetProcessByID(bp, "PRID");
var Approve = oProcess.GetTaskByName("TaskName");

Developer's Reference Guide | 205

BP Logix Inc
Process Director Documentation

Instantiate
This API will write the instantiate a Process Definition. After instantiating the Pro-
cess, you can optionally add items to the Process Instance (using Add). Finally, you
must call the Start method to actually run the instantiated Process. This is an over-
loaded method with the following possible declarations:
public bool Instantiate()

public bool Instantiate(Process procParent)

public bool Instantiate(string InitiatorUID)

public bool Instantiate(string InitiatorUID, Process procParent)

Parameters
procParent: The name of the Process Task to get.
InitatorUID: The User ID of the process initiator.

Returns
Boolean: True if the operation succeeds.

Example

var oProcess = Project.GetProcessByID(bp, "PRID");
oProcess.Instantiate();
// Add items to Timeline package here
oProcess.Start();

PostEvent
This API will post an event to a process. This is an overloaded method with the fol-
lowing possible declarations:
public static bool PostEvent (bp BP, string PRINSTID, string
EventName)

public virtual bool PostEvent(string EventName)

Parameters
BP: The BP Logix environment.
PRINSTID: The ProcessInstanceID of the process.
EventName: The string name of the event to post.

Returns
Boolean: True if the operation succeeds.

206 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

PostEvent(bp, "PRID", "EventName");

RecalcInstanceName
This API will generate a new name for a specific Process Instance object.

Parameters
None.

Returns
None.

Example

// Re-generates the name of the Process Instance
var oProcessInst = Project.GetProcessByInstID(bp, "PRINSTID");
oProcessInst.RecalcInstanceName();

ReStart
This API will start a Process instance which has previously completed. You can
optionally pass the ProcessTask or TASKID of the step to start. If neither is passed,
the Process will restart at the beginning. This is an overloaded method with the fol-
lowing possible declarations:
public bool ReStart()

public bool ReStart(string pTASKID)

public bool ReStart(ProcessTask pTask)

Parameters
pTaskID: The string ID of the task to restart.
pTask: The actual task object to restart.

Returns
Boolean: True if the operation succeeds.

Example

// Restarts the Process instance
var oProcessInst = Project.GetProcessByInstID(bp, "PRINSTID");
oProcessInst.ReStart();

Developer's Reference Guide | 207

BP Logix Inc
Process Director Documentation

Run
This API will instantiate and start a process definition in one step. You can option-
ally add a single item to the Process. This is an overloaded method with the fol-
lowing possible declarations:
public bool Run()

public bool Run(string pID, ObjectType pType)

public bool Run(string pID, ObjectType pType, string pGroup)

public bool Run(ContentObject pObj)

public bool Run(ContentObject pObj, string pGroup)

Parameters
Group: Optional Group of the object to add to the process.
pID: Optional ID of the object to add to the process.
pObj: Optional ContentObject to run.
pType: Optional Type of the object to add to the process.

Returns
Boolean: True if the operation succeeds.

Example

var oProcess = Project.GetProcessByID(bp, "PRID");
oProcess.Run();

SetCurrentFormInstance
This API will set the current Form Instance (the default Form Instance which will be
used to complete tasks) for a Process Instance. The Process must already contain a
reference to the Form Instance. This is an overloaded method with the following
possible declarations:
public bool SetCurrentFormInstance(ContentObject pObj)

public bool SetCurrentFormInstance(string pFORMINSTID)

Parameters
FORMINSTID: The form instance ID to make the current.
pObj: The ContentObject to make current.

208 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Returns
Boolean: True if the operation succeeds.

Example

// Set the specified form instance as the current form
instance
var oProcessInst = Project.GetProcessByInstID(bp, "PRINSTID");
oProcessInst.SetCurrentFormInstance("FORMINSTID");

SetPriority
This API will set the priority of a Process Instance.

Parameters
pPriority: The integer priority to set.

Returns
Boolean: True if the operation succeeds.

Example

var oProcessInst = Process.GetProcessByInstID("PRINSTID");
oProcessInst.SetPriority(1);

Start
This API will start a Process that has previously been instantiated.

Parameters
None.

Returns
Boolean: True if the operation succeeds.

Example

var oProcess = Project.GetProcessByID(bp, "PRID");
oProcess.Instantiate();
// Add items to process package here
oProcess.Start();

StartTask
This API will start a Timeline Activity in a running Process.

Developer's Reference Guide | 209

BP Logix Inc
Process Director Documentation

Parameters
RestartTask: An object variable of the ProcessTask type.

Returns
Boolean: True if the operation succeeds.

Examples
Project Timeline:

var oTask = CurrentProject.GetTaskByName("ActivityName");
CurrentProject.StartTask(oTask);

ProcessTask Class
This object represents a Process Task.

Properties
The ProcessTask Class is the base class for the WorkflowStep and ProjectActivity
classes. It implements the following properties.

PROPERTY NAME DATA TYPE DESCRIPTION

PROCID String The ID of the process

ID String The ID of the current Process Task

TASKID String The ID of the Process Task

Name String The name of the Process Task

Instructions String The instructions for users in this
Process Task

Description String The description of this Process
Task

PROCINSTID String The ID of the process instance

TASKINSTID String The ID of the Process Task
instance

ProcessInstance Process Instance
Object

The Process class for the Process
Task

Users List Object The list of ProcessTaskUser rep-

210 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

PROPERTY NAME DATA TYPE DESCRIPTION

resenting the users in this Process
Task, returned as List<Users>

Status Integer The status of the step, specified in
the nStatus field of tblPro-
jectInstance. Please see the table
definition of tblProjectInstance for
status codes.

ReAuthenticate Boolean Boolean indicating whether reau-
thorization is required for this pro-
cess task.

Start DateTime The time the Timeline Activity star-
ted

End DateTime The time the Timeline Activity
ended

Due DateTime The time the Timeline Activity is
due

ShowSignatureComments Boolean Boolean indicating whether sig-
nature comments are required to
complete this process task.

AllowEmailComplete Boolean Boolean indicating whether this
process task can be completed by
email

BaseForm For Object The base Form used by this Pro-
cess Task

InstID String The ID of the Process Task
instance

EndReason Integer The reason the Process task was
terminated. Please see the Classes
topic for a list of termination reas-
ons and their associated integer
code.

Developer's Reference Guide | 211

Table Definitions.htm
Table Definitions.htm

BP Logix Inc
Process Director Documentation

PROPERTY NAME DATA TYPE DESCRIPTION

Duration Timespan The duration of the Process task

Results List Object Returns a List object containing
the Process task results, returned
as a List<String>

Methods
AddUsersToTask
This API will add users to a Process Task. This method can be declared using the fol-
lowing overloads:
public bool AddUsersToTask(params User[] pUsers)

public bool AddUsersToTask(IEnumerable<User> pUsers)

public bool AddUsersToTask(string pUIDList)

Parameters
pUsers: A list of IEnumerable<User> or params objects to add.
pUIDList: A string of UIDs to add (separated by commas).

Returns
Boolean: True if the operation succeeds.

Example

// Add the process initiator to the current Process Step
 bool bAddUsers =
 CurrentProcessTask.AddUsersToTask
(CurrentProject.Initiator);

CancelTask
This API will set the message property of the Process Task.

Parameters
CancelUID: A string containing the UID of the user for whom to cancel the Process
Task.
CancelComments: An string value containing the cancellation comments.

Returns
Boolean: True if the operation succeeds.

212 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

// Set the message of the Process Task
bool bCancel = CurrentProcessTask.CancelTask("USERUID",
"This is unnecessary");

GetProcessTaskByTASKINSTID (Static Method)
This API will get a Process Task instance object from the specified ID.

Parameters
BP: The bp environment.
TASKINSTID: The ID of the Process Task instance to retrieve.

Returns
ProcessTask:Will return null if Process Task isn't found.

Example

// Normally not used directly
var oTaskInst = ProcessTask.GetProcessTaskByTASKINSTID(bp,
"TASKINSTID");

GetProcessTaskByTASKID (Static Method)
This API will get a Process Task definition object from the specified ID.

Parameters
BP: The bp environment.
TASKID: The ID of the Process Task to retrieve.

Returns
ProcessTask:Will return null if Process Task isn't found.

Example

// Normally not used directly
var oTaskDef = ProcessTask.GetProcessTaskByTASKID(bp,
"TASKID");

GetProcessTasksByPRID (Static Method)
This API will return a list of Process Tasks for a specified process when given a Pro-
cess ID as a parameter.

Developer's Reference Guide | 213

BP Logix Inc
Process Director Documentation

Parameters
BP: The BP Logix environment.
pRID: The Process ID of the Process to retrieve.

Returns
List<ProcessTask>: A list object of the Tasks in the specified Process, or null if not
found.

Example

// Normally not used directly
var oTasks = ProcessTask.GetProcessTasksByPRID(bp, "PRID");

GetTaskByName (Static Method)
This API will get a Process Task object from the specified Name.

Parameters
BP: The BP Logix environment.
Process: The Process object.
TaskName: The name of the Task to get.

Returns
ProcessTask:Will return null if Process Task isn't found.

Example

var oObject = Project.GetProcessByID(bp, "PRID");
var oTask =
 ProcessTask.GetTaskByName(bp, oObject , "Approve Doc");

RemoveUsersFromTask
This API will remove users from a process task. This is an overloaded method with
the following possible declarations:
public bool RemoveUsersFromTask(params User[] pUsers)

public bool RemoveUsersFromTask(IEnumerable<User> pUsers)

public bool RemoveUsersFromTask(string pUIDList)

Parameters
pUsers: A list of IEnumerable<User> or params objects to add.

214 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

UIDList: A string of UIDs to add (separated by commas).

Returns
Boolean: True if operation succeeds.

Example

// Remove the process initiator from the current Activity
CurrentProjectActivity.RemoveUsersFromTask(Cur-
rentProject.Initiator);

ResendTaskEmails
This API will resend the task email to all task users.

Parameters
UIDAdmin: Optional string parameter of the user you want to associate with the
resend in the audit logs.
Comments: The optional string comments for a completed task.

Returns
ProcessTask: The ProcessTask object or null if the operation fails.

Example

ProcessTask.ResendTaskEmails("UIDAdmin", "Comments");

Restart
This API will restart a specified task. This is an overloaded method with the fol-
lowing possible declarations:
public bool Restart()

public bool Restart(string UID, string Comments)

Parameters
UID: The UID string value of the user for whom the task should be restarted.
Comments: A string containing comments to append to the task that is restarted.

Returns
Returns 'true" if the operation succeeds.

Developer's Reference Guide | 215

BP Logix Inc
Process Director Documentation

Example

// Restart the Process Task
bool bRestart = CurrentProcessTask.Restart();

SetDueDate
This API will set the Due Date of a Process Task.

Parameters
DUEDATE: The date to set.

Returns
Boolean: True if the operation succeeds.

Example

// Set DueDate of current Activity
CurrentProjectActivity.SetDueDate(DateTime.Now.AddHours(2));

SetDuration
This API will set the Duration of a Timeline-based Process Task.

Parameters
SECONDS: The number of seconds to set the duration to. Set to 0 to have the sys-
tem automatically calculate the duration.

Returns
Boolean: True if the operation succeeds.
Example

// Set duration of current Activity
CurrentProjectActivity.SetDuration(10000);

SetError
This API will set the message property of the Process Task. This is an overloaded
method with the following possible declarations:
public bool SetError(string pFormat, params object[] pParams)

public bool SetError(string strError, bool prepend)

216 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Parameters
pFormat: A format string for the error message.
pParams: An params object containing a list of message parameters.
strError: A string value containing the error message to apply to the Process Task.
Prepend: A Boolean value signifying whether the error message should be pre-
pended to an existing message, or replace the existing message.

Returns
Boolean: True if the operation succeeds.

Example

// Set the error message to display
bool bError = CurrentProcessTask.SetError("Error Message",
true);

SetMessage
This API will set the message property of the Process Task. This is an overloaded
method with the following possible declarations:
public bool SetMessage(string pFormat, params object[] pParams)
public bool SetMessage(string strMessage, bool prepend)

Parameters
pFormat: A formatting string.
pParams: A paramsobject containing a list of message parameters.
strMessage: A string value containing the message to apply to the Process Task.
Prepend: A Boolean value determining whether the message should be pre-
pended to an existing message, or replace the existing message.

Returns
Boolean: True if the operation succeeds.

Example

// Set the message of the Process Task
bool bMessage = CurrentProcessTask.SetMessage("Message text",
true);

Developer's Reference Guide | 217

BP Logix Inc
Process Director Documentation

ProcessTaskUser Class
This object represents a user in a Process Task.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

Comment String The optional comments if
the user completed this
Task

End DateTime The time that the user com-
pleted this Task

ProcessInstance Process Instance
Object

The Process Instance object
for the Process containing
this Task User

ProcessTaskInstance Process Task
Instance Object

The Process Task Instance
object for the Task con-
taining this Task User

PROCID String The ID of the Process Defin-
ition

Start DateTime The time that the user star-
ted in this Task

Status Integer The status of this user in
this Process Task. Please
see the table definition of
tblProjActivityUserInst for
status codes.

SubTaskName String The optional name of the
sub task assigned to this
Task User

TASKID String The ID of the Process Task

TASKINSTID String The ID of the Task Instance

TASKUID String The ID of the Process Task
User

218 | Developer's Reference Guide

Table Definitions.htm

BP Logix Inc
Process Director Documentation

PROPERTY NAME DATA TYPE DESCRIPTION

TASKUINSTID String The ID of the Task User
Instance

TermReason Integer The termination reason for
this user in this Task.
Please see the Classes topic
for a list of termination
reasons and their asso-
ciated integer code.

TLID String The optional task list ID

User User Object The user object

Methods
CancelUser
This API will cancel the task for the particular user which this object represents.
This is an overloaded method with the following possible declarations:
public bool CancelUser()

public bool CancelUser(string Comments)

public bool CancelUser(string Comments, string UIDAdmin)

Parameters
Comments: (optional) Comments to add to the completion action.
UIDAdmin: (optional) The UID of the (administrative) User who authorized the
Task’s cancellation.

Returns
Boolean: True if the operation succeeds.

Example

// Cancel the User's Task, adding a comment
CurrentProjectActivityUser.CancelUser("Programmatically can-
celing user");

CompleteUser

Developer's Reference Guide | 219

BP Logix Inc
Process Director Documentation

This API will complete the task for the particular user which this object represents.
This is an overloaded method with the following possible declarations:
public bool CompleteUser()

public bool CompleteUser(string Selection)

public bool CompleteUser(string Selection, string Comments)

Parameters
Selection: (optional) The branch to take on completion.
Comments: (optional) Comments to add to the completion action.

Returns
Boolean: True if the operation succeeds.

Example

// Complete the User's Task, taking the "Approve" branch
CurrentProjectActivityUser.CompleteUser("Approve");

ConvertSysVarsInString
This API will convert a SysVar string in the context of the ProcessTaskUser. This is
an overloaded method with the following possible declarations:
public virtual string ConvertSysVarsInString(string pString)

public virtual string ConvertSysVarsInString (string pString,
 bp.SysVarEncode pDe-
faultEncode)

Parameters
String: The SysVar string to convert.
pDefaultEncode: A BP SysVarEncode object that defines the encoding.

Returns
String: The expansion of the SysVar string

Example

// Create the string to append the current object name to the
// string "Name: "
var strNew =
 CurrentProjectActivityUser.ConvertSysVarsInString("Name:
{OBJ_NAME}");

220 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

GetProcessTaskUserByTASKUID
This API will return a ProcessTaskUser for a Given TaskUserID.

Parameters
BP: The BP Logix environment.
pTASKUID: The string TaskUserID for the user.

Returns
ProcessTaskUser: The ProcessTaskUser object or null if the operation fails.

Example

var oUser = ProcessTaskUser.GetProcessTaskUserByTASKUID(bp,
"TASKUID");

GetProcessTaskUserByTASKUINSTID
This API will return a ProcessTaskUser for a Given TaskUserInstanceID.

Parameters
BP: The BP Logix environment.
pTASKUINSTID: The string TaskUserInstanceID for the user.

Returns
ProcessTaskUser: The ProcessTaskUser object or null if the operation fails.

Example

var oUser =
 ProcessTaskUser.GetProcessTaskUserByTASKUINSTID(bp,
"TASKUINSTID");

ResendEmailForUserTask
This API will resend the task email to a specific user.

Parameters
UIDAdmin: Optional string parameter of the user you want to associate with the
resend in the audit logs.
Comments: The optional string comments for a completed task.

Returns
ProcessTaskUser: The ProcessTaskUser object or null if the operation fails.

Developer's Reference Guide | 221

BP Logix Inc
Process Director Documentation

Example

var oUser =
 ProcessTaskUser.GetProcessTaskUserByTASKUINSTID(bp,
 "TASKUINSTID");
oUSer.ResendEmailForUserTask("UIDAdmin", "Comments");

TaskUsersInTask (Static Method)
This API will return a collection of all Process Task User objects from the specified
Task ID.

Parameters
BP: The bp environment.
TASKINSTID: The ID of the Process Task instance with the Process Task Users to
retrieve.

Returns
IEnumerable<ProcessTaskUser>: The list of Process Task User objects for the par-
ticular Task.

Example

// Normally not used directly
var TaskUsers = ProcessTaskUser.TaskUsersInTask(bp,
"TASKINSTID");

Project (Process Timeline) Class
This class defines a Process Timeline object (definition or instance).
When developing Form scripts or Timeline scripts, you are automatically given an
instance of the current Process Timeline with the CurrentProject variable.
This object extends the Process class, which, in turn, extends the ContentObject
class. Thus all properties and methods from the Process and ContentObject classes
are available in the Project class, in addition to those below.

Properties
PRID: The ID of the timeline definition.
PRINSTID: The ID of the timeline instance.

222 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Methods
AddToProject
This method attaches an object to the process instance.

Parameters
ContentObject pObj: The content object to be attached to the project.
String pGroup (optional): The group name to use for the object.
String pID: The ID of the object to attach.
ObjectType pType (optional): The ObjectType of the attached object.
String pGroup (optional): The group name to use for the object.

Returns
Boolean: True if the operation succeeds.

Example

var oObject = Process.GetProcessByInstID(bp, "INSTID");
var document - Document.GetDocumentbyDID(bp, "DID");
bool success = oObject.AddToProject(document, "Group");

This method also has an overloaded method that can be called via the following
parameters

GetActivityByName
This method returns a ProjectActivity object (Process Timeline Activity), given the
name of the activity.

Parameters
String pActivity: Name of the requested activity.

Returns
ProjectActivity: The requested project activity.

Example

var oObject = Process.GetProcessByID(bp, "PID");
var someActivity = oObject.GetActivityByName("ActivityName");

GetProjectByPRID
This method returns a project object given the project’s ID.

Developer's Reference Guide | 223

BP Logix Inc
Process Director Documentation

Parameters
bp BP (only necessary if this is a static call): The bp environment.
String PRID: The ID of the timeline definition.

Example

var someProject = Project.GetProjectByPRID(bp, "PID");

Returns
Project: The project object with the specified ID.

GetProjectByPRINSTID
This method returns a project object given the project instance’s ID.

Parameters
String PRINSTID: The ID of the requested project instance.

Returns
Project: The project object whose instance ID matches the one requested.

Example

var someProject = Project.GetProjectByPRINSTID(bp,
"PRINSTID");

PostEvent (static method)
This method posts an event to the specified project instance.

Parameters
bp BP: The bp environment.
String PRINSTID: ID of the project instance to post an event to.
String EventName: Name of the event to post.

Returns
Boolean: True if the operation succeeds.

Example

bool success = Project.PostEvent(bp, "PRINSTID", "EventName");

Rollback

224 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

This method rolls a process back to a specified activity name.

Parameters
bp BP: The bp environment.
String ActivityName: The activity name to which to roll back the process.

Returns
Boolean: True if the operation succeeds.

Example

bool success = CurrentProject.Rollback(bp, “ActivityName”);

ProjectActivity Class
This object represents a Process Timeline Activity. It is derived from the Pro-
cessTask Class and includes all of its properties, plus the additional properties
below.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

ACTID String The ID of the Project activity

ACTINSTID String The ID of the Activity Instance

ActivityType Integer The type of activity, defined by the enum:
public enum ActivityType
Possible Activity Types are as follows:

VALUE EXPLANATION

0 Not set

1 User: Users are
assigned to activ-
ity

2 Notify: Notify
users

3 Process: A Work-

Developer's Reference Guide | 225

BP Logix Inc
Process Director Documentation

PROPERTY NAME DATA TYPE DESCRIPTION

VALUE EXPLANATION

flow or Process
Timeline is run
for this activity

4 Script: A script is
run for this activ-
ity

5 Custom Task: A
Custom Task is
run for this activ-
ity

6 Meta Data: Used
to set the pack-
age to this meta
data (with some
options to copy
form instance
meta data)

7 Form: Used to
attach a form
and/or set the
current form
viewer for this
project

8 Branch activity

9 Parent activity

10 End Timeline

11 Wait: Wait for
time or con-
dition

ActName String The name of the Project Activity

226 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

PROPERTY NAME DATA TYPE DESCRIPTION

PRID String The ID of the Project Definition

PRINSTID String The Project Instance ID

Methods
GetProjectActivityByACTID
This API will get a Project/Timeline Activity object from the specified instance ID.

Parameters
BP: The bp environment.
ACTID: The ID of the Project Activity to retrieve.

Returns
ProjectActivity:Will return null if the activity instance isn't found.

Example

// Normally not used directly
var oProjectActivity =
 ProjectActivity.GetProjectActivityByACTID (bp, "ACTID");

GetProjectActivityByACTINSTID
This API will get a Project/Timeline Activity instance object from the specified
instance ID.

Parameters
BP: The bp environment.
ACTINSTID: The ID of the Project Activity instance to retrieve.

Returns
ActivityInstance:Will return null if the activity instance isn't found.
Example

// Normally not used directly
var oProjectActivityInst =
 ProjectActivity.GetProjectActivityByACTINSTID (bp,
"ACTINSTID");

GetProjectActivityByName

Developer's Reference Guide | 227

BP Logix Inc
Process Director Documentation

This API will get a Project/Timeline Activity object from the specified Name.

Parameters
BP: The bp environment.
ActivityName: The string name of the Project Activity to retrieve.

Returns
ProjectActivity:Will return null if the activity instance isn't found.

Example

// Normally not used directly
var oProjectActivity =
 ProjectActivity.GetProjectActivityByName (bp, "Activ-
ityName");

Restart
This API will restart a Timeline Activity.

Parameters
None.

Returns
Returns 'true" if the operation succeeds.

Example

// Restart the Process Task
bool bRestart = CurrentActivity.Restart();

SetInstanceOwnerDelegate
This method enables the Owner Shared Delegate to be changed on a running activ-
ity instance.

Parameters
String pActivityName: The activity name to which to set the Delegation Owner(s).
String pNewOwnerUIDs: A comma-separated list of UIDs to set the new owner(s)
of the delegation instance.

Returns
Boolean: True if the operation succeeds.

228 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

bool success = SetInstanceOwnerDelegate("Activity Name",
"UID1,UID2,UID3");

ProjectActivityUser Class
This object represents a user in a Process Timeline Activity (Process Task).

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

ACTID String The ID of the Project activ-
ity

ACTINSTID String The ID of the Activity
Instance

ACTUID String The ID of the Activity User

ACTUINSTID String The ID of the Activity User
Instance

IconNumber String The icon associated with
the chosen result

PRID String The ID of the Project Defin-
ition

PRINSTID String The Project Instance ID

ResultName String Result of the activity

RTID String ID of the activity result

SubTaskName String The optional name of the
sub task assigned to this
Task User

Methods
CancelUser
This API will cancel the task for the particular user which this object represents

Parameters
Comments: (optional) Comments to add to the completion action.

Developer's Reference Guide | 229

BP Logix Inc
Process Director Documentation

Admin: (optional) The UID of the (administrative) User who authorized the Task’s
cancellation.

Returns
Boolean: True if the operation succeeds.

Example

// Cancel the User's Task, adding a comment
CurrentProjectActivityUser.CancelUser("Programmatically can-
celing user");

CompleteUser
This API will complete the task for the particular user which this object represents

Parameters
Selection: (optional) The branch to take on completion.
Comments: (optional) Comments to add to the completion action.

Returns
Boolean: True if the operation succeeds.

Example

// Complete the User's Task, taking the "Approve" branch
CurrentProjectActivityUser.CompleteUser("Approve");

ConvertSysVarsInString
This API will convert a SysVar string in the context of the ProcessTaskUser.

Parameters
String: The SysVar string to convert.

Returns
String: The expansion of the SysVar string.

Example

// Create the string to append the current object name to the
// string "Name: "
var strNew =
 CurrentProjectActivityUser.ConvertSysVarsInString("Name:
{OBJ_NAME}");

230 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Report Class
This object represents a Report object. It is available only to installations that use
the Advanced Reporting component

Methods
ExportReport
Exports a report to a file. This is an overloaded method with the following possible
declarations:
public static bool ExportReport (bp BP, string RID,

 string ExportName,
 string ContentParentID,
 string ContentFolderPath,
 string LocalFolderPath)

public static bool ExportReport (bp BP, string RID,
 string ExportName,
 string ContentParentID,
 string ContentFolderPath,

string LocalFolderPath,
 List<NameValue> Variables)

Parameters
BP: The BP Logix Object.
RID: The string value of the Report ID.
ExportName: The String name of the exported report.
ContentParentID: The string value of the Content ID of the report's parent object.
ContentFolderPath: The string value of the Report's content path in Process Dir-
ector.
LocalFolderPath: The string value of the local file path where the exported report
will be saved.
Variables: A List object containing the required report variables.

Returns
Boolean: True of the operation succeeds.

Developer's Reference Guide | 231

BP Logix Inc
Process Director Documentation

Example

bool rExport = ExportReport(bp, "ReportID", "ReportName",
 "ContentParentID", "Partition\Reports\Path",
 "C:\\File\Path")

Rule Class
This object represents a Business Rule.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

Group String The string Group name of
the Business Rule.

In addition to Properties, Business Rules use the SystemVariableContext object to
specify the various context properties for the Business Rule. Please see the Sys-
temVariableContext topic for more information.

Methods
Evaluate
This API will call the evaluation of the Business Rule, returning the appropriate
data for that rule. This is an overloaded method with the following possible declar-
ations:
public string Evaluate()

public string Evaluate(IEnumerable<NameValue> Variables)

public string Evaluate(SysVarClass.IContextReadonly Context)

public string Evaluate(SystemVariableContextReadonly Context)

public string Evaluate (SystemVariableContextReadonly Context,
 IEnumerable<NameValue> Variables)

Parameters
Variables: An IEnumerable object containing the variables to pass to the Business
Rule.
Context: A SystemVariableContext object containing the context settings for the
Business Rule.

232 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Returns
String: The result of the Business Rule's evaluation.

Example

var oRule = Rule.GetRuleByID(bp, "RULEID");
string result = oRule.Evaluate();

GetRuleByID (Static Method)
This API will get a Business Rule object from the specified ID.

Parameters
BP: The bp environment.
RuleID: The string ID of the partition to retrieve.

Returns
Rule Object:Will return null if the Business Rule isn't found.

Example

// Normally not used directly
var oRule = Rule.GetRuleByID(bp, "RULEID");

GetRuleByName (Static Method)
This API will return a Business Rule object from the specified Rule Name. This is an
overloaded method with the following possible declarations:
public static Rule GetRuleByName (bp BP, string PID, string
RuleName)

public static Rule GetRuleByName (bp BP, string PID, string
RuleName, string Group)

Parameters
BP: The bp environment.
PID: The ID of the partition on which the Business Rule is located.
RuleName: The string name of the Business Rule.
Group: The string Group name of the Business Rule.

Returns
Rule:Will return null if partition isn't found.

Developer's Reference Guide | 233

BP Logix Inc
Process Director Documentation

Example

var oRule = Rule.GetRuleByName(bp, "PartitionID", "RuleName");

SetRuleGroup
This API will set a Group name for a Business Rule object.

Parameters
Group: The string Group name to set.

Returns
Rule Object:Will return null if the Business Rule isn't found.

Example

// Normally not used directly
var oRule = Rule.GetRuleByID(bp, "RULEID");
oRule.SetRuleGroup("GroupName");

SystemVariable Class
This object represents a SystemVariable object.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

Type Code Enum An enumerated System
Variable type.

Data DataItem Object A DataItem object con-
taining the System Vari-
able's data.

Parameters Collections
Object

A Collections object con-
taining the Parameters for
the System Variable.

In addition to Properties, System Variables use the SystemVariableContext object
to specify the various context properties for the System Variable. Please see the
SystemVariableContext topic for more information.

234 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Methods
Copy
This API will create a copy of a System Variable.

Parameters
None

Returns
Rule Object:Will return a new copy of the specified System variable.

Example

var sv = new SystemVariable(bp.eSysVar.FormField,
 new DataItem(FormEnums.eDataType.String)

{ String = "UserPicker1" });
sv.Parameters["format"] = "UID";
var sEval = sv.Copy();

Evaluate
This API will call the evaluation of the System Variable.

Parameters
Context: A SystemVariableContext object containing the context settings for the
Condition Set.

Returns
String: The result of the System Variable's evaluation.

Example

var sv = new SystemVariable(bp.eSysVar.FormField,
 new DataItem(FormEnums.eDataType.String)

{ String = "UserPicker1" });
sv.Parameters["format"] = "UID";
var sEval = sv.Evaluate();

SystemVariableContext Class
This object represents a SystemVariableContext object that contains the context
properties for a System Variable or other object.

Properties

Developer's Reference Guide | 235

BP Logix Inc
Process Director Documentation

PROPERTY NAME DATA TYPE DESCRIPTION

Object ContentList
object

A ContentObject object to
assign as context

Form Form Object A Form object to assign as
context

FormControl Form Control
Object

A FormControl object to
assign as context

Process Process Object A Process object to assign
as context

ProcessTask ProcessTask
Object

A ProcessTask object to
assign as context

ProcessTaskUser ProcessTaskUser
Object

A ProcessTaskUser object
to assign as context

User User Object A User object to assign as
context

Methods
This class has no methods to call. This class merely stores the context property for
a declared SystemVariableContext object. Once the object is declared and prop-
erties set, the object can be used to set the context for another Process Director
object, such as a Business Rule.
Example

// Declare the context object
SystemVariableContext mycontext = new SystemVariableContext();

// Set the context Properties
mycontext.Form = Form.GetFormByFORMID(bp, "FORMID");
mycontext.ProcessTaskUser = Pro-
cessTaskUser.GetProcessTaskUserByTASKUID(bp, "TASKUID");

// Specify a Business Rule to call and apply the context for
evaluation
var oRule = Rule.GetRuleByID(bp, "RULEID");
string result = oRule.Evaluate(mycontext);

236 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Task Class
A Task object represents a task assigned to a user. It is distinct from a ProcessTask
object, which represents a Process Timeline Activity or Workflow Step. A task object
contains such information as the name, description, instruction, and start and due
dates of a task.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

UID String The UID of the user to
whom this task is assigned

FORMINSTID String The ID of the form instance
this task is related to

FORMID String The ID of the form related
to this task

TLID String This task’s ID in the task list

PID String ID of the partition this task
is on.

PROCINSTID String ID of the timeline or Work-
flow instance to which this
task belongs

TASKID String ID of the Workflow Step or
Timeline Activity to which
this task belongs

TASKINSTID String ID of the Workflow Step or
Timeline Activity instance to
which this task belongs

TASKUINSTID String ID of the Workflow user
step or timeline user activ-
ity instance to which this
task belongs

tblTaskList Integer The database table row
related to this task

Developer's Reference Guide | 237

BP Logix Inc
Process Director Documentation

PROPERTY NAME DATA TYPE DESCRIPTION

TaskType Integer The type of this task. Please
see the table definition of
tblTaskList for Task Type
codes.

Created DateTime The date and time this task
was created

Due DateTime The date and time this task
is due

URL String The URL of the Timeline
Activity or Workflow task

Methods
CancelTask
This function attempts to cancel the task, and returns a Boolean variable reflecting
whether the cancellation succeeded.

Parameters
None

Returns
Boolean: True if the operation succeeds.

Example

Task myTask = GetTaskByTLID(bp, "TLID");
myTask.CancelTask();

CompleteTask
This function attempts to complete the task given the result, branch taken, or
response for the task completion, as well as comments regarding its completion. It
returns a Boolean reflecting whether the completion succeeded or not.

Parameters
Selection: The branch taken, response or result for the completion of the task.
Comments: Any comments regarding the completion of the task.

238 | Developer's Reference Guide

Table Definitions.htm

BP Logix Inc
Process Director Documentation

Returns
Boolean: True if the operation succeeds.

Example

// Approve the task and complete it
Task myTask = GetTaskByTLID(bp, "TLID");
myTask.CompleteTask("Approved", "Auto-approval via script");

GetTaskByTLID (Static Method)
This static function gets a task by the task list ID (TLID).

Parameters
BP: The bp environment.
TLID: The task list ID of the task being requested.

Returns
Task: The task whose TLID matches the one requested.

Example

Task myTask = Task.GetTaskByTLID(bp, "TLID");

GetTasksForEmail (Static Method)
This static function gets the tasks assigned to a user identified by email address.
This is commonly used for unauthenticated users, who are identified solely by
email address, and who have no identity in Process Director.

Parameters
BP: The bp environment.
PID or part (optional): The ID or partition object of the partition on which the
tasks exist. Is set to null if not specified.
Email: The email address of the user whose tasks are being requested.

Returns
List<Task>: A list of the tasks assigned to this user.

Example

List<Task> taskList = new List<Task>();
taskList = GetTasksForEmail(bp, "email@domain.com");

Developer's Reference Guide | 239

BP Logix Inc
Process Director Documentation

GetTasksForUser (Static Method)
This static function gets the tasks assigned to a specified user. This is an over-
loaded method with the following possible declarations:
public static List<Task> GetTasksForUser (bp BP, string PID,
string UID)

public static List<Task> GetTasksForUser(bp BP, string UID)

public static List<Task> GetTasksForUser(bp BP, Partition part,
User user)

Parameters
BP: The bp environment.
PID or part (optional): The ID or partition object of the partition on which the
tasks exist. Is set to null if not specified.
UID or user: The UID or user object of the user whose tasks are being requested.

Returns
List<Task>: A list of the tasks assigned to this user.

Example

List<Task> taskList = new List<Task>();
taskList = GetTasksForUser(bp, "UID");

User Class
This object represents a user in a Form instance. An instance is a completed Form,
or one that is currently being edited.
When developing Form scripts (in the various callback methods such as BP_Event),
you are automatically given an instance of the “current” user with the CurrentUser
variable.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

AuthType Code Enum The type of user.
User.eAuth is an enum
which can return:

240 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

PROPERTY NAME DATA TYPE DESCRIPTION

User.eAuth.Unknown,
User.eAuth.BuiltIn
User.eAuth.Windows
User.eAuth.Windows
User.eAuth.LDAP
User.eAuth.External
User.eAuth.SAML|
User.eAuth.Header

AutoDST Boolean Is DST enabled for user?

AvgLoginSeconds Integer The average number of
seconds the user remains
logged in.

Company tblTaskList The optional company asso-
ciated with this user

Culture tblTaskList A string value containing
the User's culture inform-
ation derived from the .NET
CultureInfo Class.

CustomDate DateTime Optional custom date/time
associated with user

CustomNumber Decimal Optional custom number
associated with user

CustomString tblTaskList Optional custom string
associated with user

CustomString2 tblTaskList Optional second custom
string associated with user

Delegate User Object A different user to which
the user delegates (if null,
the user has no delegate)

Dept tblTaskList The optional department
associated with this user

Developer's Reference Guide | 241

BP Logix Inc
Process Director Documentation

PROPERTY NAME DATA TYPE DESCRIPTION

Description tblTaskList The optional description
associated with this user

Disabled Boolean A Boolean value that
returns "true" if the user is
disabled.

DisplayString tblTaskList Returns either the User-
Name if configured, or the
UserID

Domain tblTaskList Optional domain if user is a
Windows user

Email tblTaskList Email address of user

ExternalGUID tblTaskList The optional external
unique ID associated with
this user

Groups List Object The list of groups to which
the user belongs, returned
as List<Group>. If you need
to check whether a large
number of users are in a
specific group, it may be
more efficient to use the
Group.HasUser () func-
tion.

ImpersonatedBy User Object If the user is being imper-
sonated, this will be a
string containing the name
of the impersonating user.

LastActivity DateTime Timestamp of last activity
for user

Locked Boolean A Boolean value that
returns "true" if the user

242 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

PROPERTY NAME DATA TYPE DESCRIPTION

account is locked.

NumLogins Integer The number of times the
user has logged in.

Office String The optional office asso-
ciated with this user

Phone String The optional phone num-
ber associated with this
user

SessionObjects Dictionary Object Returns a dictionary of
attributes that can asso-
ciated with this user while
logged in, returned as a
Dictionary<Key,Value>

Tasks List Object Returns the list of Tasks for
the user, returned as a
List<task>

TimeZone String Time zone of user

Title String The optional title asso-
ciated with this user

UID String The internal ID of the user

UserID String The unique string to
identify the user

UserName String The "friendly" name of the
user (for display)

Example

// Setting a variable to the current username
var cUser = CurrentUser.UserName;

Methods
AddSharedDelegate

Developer's Reference Guide | 243

BP Logix Inc
Process Director Documentation

This method enables the ability to add or remove a UID from the list of shared del-
egate users for a user.

Parameters
pGrantAccessToUID: The UID to add to the shared delegation.

Returns
Boolean: True if the operation succeeds.

Example

// Add a user to shared delegation
CurrentUser.AddSharedDelegate("UID");

AddToGroup
This method adds the user to the specified group. This is an overloaded method
with the following possible declarations:
public void AddToGroup(Group Group)

public void AddToGroup(string GID)

Parameters
GID: The ID of the group to which to add the user.
Group: The actual group object to which to add the user.

Returns
None

Example

var oUser = User.GetUserByUserID(bp, "UID");
var oGroup = Group.GetGroupByName(bp, "GroupName");

// The following two calls do the same thing (add "oUser" to
"oGroup")
oUser.AddToGroup(oGroup); // Call with the Group object
oUser.AddToGroup(oGroup.GID; // Call with the Group ID

AddUserToPartition
This method adds the user to the specified partition.

Parameters
Partition: The Partition object to which to add the user.

244 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Returns
Boolean: True if the operation succeeds.
Example

// Create a user, and force the user to change the password
after login
var oUser = User.CreateUser(bp, "NewUID", "new@acme.com", "New
User",
 "TEMP_PASSWORD",true);

// Add the new user to a partition
oUser.AddUserToPartition(Partition.GetPartition(bp, "Partition
Name"));

AddUserToProfile
This method adds the user to the specified profile.

Parameters
Profile: The name of the profile to which to add the user.

Returns
Boolean: True if the operation succeeds.

Example

// Create a user, and force the user to change the password
after login
var oUser = User.CreateUser(bp, "NewUID", "new@acme.com",
 "New User", "TEMP_PASSWORD",true);

// Add the new user to a profile
oUser.AddUserToProfile("ProfileName");

CreateUser (Static Method)
This method will create a user object for the specified ID.

Parameters
BP: The bp environment.
UserID: The User ID to create.
Email: The email address of the new user.
UserName: The name of the new user.

Developer's Reference Guide | 245

BP Logix Inc
Process Director Documentation

Password: The initial password of the new user.
MustChangePassword: If set to true, the new user must change the password
after logging in.
AuthType: Added in v5.44.500, this parameter takes one of the User.eAuth enum
types to specify the authorization type for the user.

Returns
User: A user object representation of the new user.

Example

// Create a user, and force the user to change the password
after login
var oUser = User.CreateUser(bp, "NewUID", "new@acme.com",
 "New User", "Temp_Password", true);

CreateExternalUser (Static Method)
This method will create a user object for the specified ID. The user object is an
external user which can only be signed in via an external authentication system.
This is an overloaded method with the following possible declarations:
public static User CreateExternalUser (bp BP, string UserID,

string Email, string User-
Name)

public static User CreateExternalUser (bp BP, string UserID,
 string Email, string User-
Name,
 Defines.eAuth UserType)

public static User CreateExternalUser (bp BP, string UserID,
 string Email, string User-
Name,
 string GUID,

Defines.eAuth UserType)

public static User CreateExternalUser (bp BP, string UserID,
string Email,
 string UserName, string
GUID,

246 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

 string Domain,
 Defines.eAuth UserType)

Parameters
BP: The bp environment.
UserID: The User ID to create.
Email: The email address of the new user.
UserName: The name of the new user.
UserType: Optional type of user.
GUID: Optional Unique identifier for the user.

Returns
User: A user object representation of the new user.

Example

// Create a SAML user
var oUser = User.CreateExternalUser (bp, "NewUID", "new@acme.-
com",
"New User", User.eAuth.SAML);

DecodeLDAPName
This method will decode an LDAP name string to only return the "name" part. This
is typically used for groups.

Parameters
Name: The LDAP Name string.

Returns
String: The "name" portion of the LDAP string.

Example

string name = DecodeLDAPName("cn=ABC");

DelegateUser
This method enables a user to delegate all tasks.

Parameters
UID: The UID to delegate to.

Developer's Reference Guide | 247

BP Logix Inc
Process Director Documentation

Returns
Boolean: True if the operation succeeds.

Example

// Delegate current users tasks to another user
CurrentUser.DelegateUser("UID");

Delete
This method will remove the User from the system.

Parameters
None

Returns
None

Example

var oUser = User.GetUserByUserID(bp, "UID");
oUser.Delete()

DeleteUser
This method will remove the User from the system.

BP Logix strongly recommends that users be disabled, not deleted.
Deleting a user will delete all of their system history as well, including all
process partitipation.

Parameters
BP: The BP Logix environment.
UserUID: The User UID of the User to delete.

Returns
Boolean: True if the operation succeeds.

Example

bool deleted = DeleteUser(bp, "USERUID");

248 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

DisableUser
This method will disable the specified user's account and cancel the user in any act-
ive process tasks.

Parameters
None

Returns
Boolean: True of the operation succeeds.

Example

var oUser = User.GetUserByUserID(bp, "UID");
oUser.DisableUser();

DisableUserEmail
This method will disable the ability to send email to a specified user.

Parameters
None

Returns
Boolean: True of the operation succeeds.

Example

var oUser = User.GetUserByUserID(bp, "UID");
oUser.DisableUserEmail();

EnableUser
This method will enable a Process Director User. This is an overloaded method with
the following possible declarations:
public bool EnableUser()

public bool EnableUser(bool pEnable) [Deprecated]

Parameters
pEnable [Optional]: Setting this parameter to "True" will enable the user, and set-
ting it to "False" will disable the user. The method that uses this parameter has
been deprecated, but remains in the product for backward compatibility.

Developer's Reference Guide | 249

BP Logix Inc
Process Director Documentation

Returns
Boolean: True of the operation succeeds.

Example

var oUser = User.GetUserByUserID(bp, "UID");
oUser.EnableUser();

EnableUserEmail
This method will enable the ability to send email to a specified user.

Parameters
None

Returns
Boolean: True of the operation succeeds.

Example

var oUser = User.GetUserByUserID(bp, "UID");
oUser.EnableUserEmail();

GetAllUsers (Static Method)
This static method will get a list of all users on the system.

Parameters
BP: The bp environment.

Returns
List<User>: A list of all Users on the system.

Example

var allUsers = User.GetAllUsers(bp);

GetUserByEmail (Static Method)
This method will get a user object from the specified email address.

Parameters
BP: The bp environment.
UserEmail: The email address of the user to retrieve.

250 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Returns
User: A user object representation of the user.

Example

var oUser = User.GetUserByEmail(bp, "jane@acme.com");

GetUserByExtID (Static Method)
This method will get a user object from the specified external ID. For instance, Act-
ive Director users user the SID as the unique external identifier.

Parameters
BP: The bp environment.
ExtID: The unique external ID of the user to retrieve.

Returns
User: A user object representation of the user.

Example

var oUser = User.GetUserByExtID (bp, user-
principal.Sid.ToString());

GetUserByID (Static Method)
This method will get a user object from the specified UserID.

Parameters
BP: The bp environment.
pUID: The UID of the user to retrieve. This is the internal ID used by Process Dir-
ector.

Returns
User: A user object representation of the user.

Example

// Normally not used directly
var oUser = User.GetUserByID(bp, "UID");

GetUserByUserID (Static Method)

Developer's Reference Guide | 251

BP Logix Inc
Process Director Documentation

This method will get a user object from the specified ID. This is an overloaded
method with the following possible declarations:
public static User GetUserByUserID(bp BP, string pUserID)

public static User GetUserByUserID (bp BP, string pUserID,
 Defines.eAuth AuthType)

Parameters
BP: The bp environment.
pUserID: The ID of the user to retrieve.
AuthType: An optional Defines.eAuth object that defines the user's author-
izations, i.e. User.eAuth.Windows, User.eAuth.BuiltIn, etc.

Returns
User: A user object representation of the user.

Example

// Normally not used directly
var oUser = User.GetUserByUserID(bp, "UID",
User.eAuth.BuiltIn);

GetUserByIDOrUserID (Static Method)
This method will get a user object from the specified UID or UserID. This is an over-
loaded method with the following possible declarations:
public static User GetUserByUserID(bp BP, string pUser)

public static User GetUserByUserID (bp BP, string pUser,
 Defines.eAuth AuthType)

Parameters
BP: The bp environment.
pUser: The UID or UserID of the user to retrieve.
AuthType: An optional Defines.eAuth object that defines the user's authorizations,
i.e. User.eAuth.Windows, User.eAuth.BuiltIn, etc.

Returns
User: A user object representation of the user.

252 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

// Normally not used directly
var oUser = User.GetUserByUserID(bp, "UID");

ImportUsersFromExcel
This method enables you to import a batch of users from an Excel spreadsheet.

Parameters
BP: The BP class.
DID: The Document ID of the Excel file in the Content List.
SheetName: The sheet name in the Excel file that contains the list of users.

Returns
String: The result of the import operation.

Example

// Import the users in the "Users.XLSX" file in the sheet
named "Sheet1"
var DID = ContentObject.GetObjectByPathName(bp,
"PartitionName",
 "/Users.XLSX");
var RES = BPLo-
gix.WorkflowDirector.SDK.User.ImportUsersFromExcel(bp,

DID.ID, "Sheet1");

InGroup
This method checks if the user exists in the specified group.

Parameters
GID: The ID of the group in which to test the user.
Group: The actual group object in which to test the user.

Returns
Boolean:Whether or not the user exists in the specified group.

Example

var oUser = User.GetUserByUserID(bp, "UID");
var oGroup = Group.GetGroupByName(bp, "GroupName");
// The following two conditionals test the same thing (is

Developer's Reference Guide | 253

BP Logix Inc
Process Director Documentation

"oUser"
// in "oGroup")
if(oUser.InGroup(oGroup))
{

// Do action
}
if(oUser.InGroup(oGroup.GID))
{

// Do action
}

LockUserAccount
This method locks the user account for a specified user.

Parameters
UID: The UID of the user account to lock.

Returns
Boolean: True if the operation succeeds.

Example

bool locked = LockUserAccount("UID");

NormalizeUserList (Static Method)
This method will take a UID or UserID list in string format or in a DataItem object
and convert it to a normalized List object. This is an overloaded method with the
following possible declarations:
public static List<User> NormalizeUserList(bp BP, string pUser-
List)
public static List<User> NormalizeUserList(bp BP, string pUser-
List,
 bool ReturnNullOnIn-
valid)
public static List<User> NormalizeUserList(bp BP, ref DataItem
pUsers)
public static List<User> NormalizeUserList(bp BP, ref DataItem
pUsers,

254 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

 bool ReturnNullOnIn-
valid)

Parameters
BP: The bp environment.
pUserList: A string containing a comma-separated UID or UserID list of users.
pUsers: A DataItem object containing a list of UIDs or UserIDs.
ReturnNullOnInvalid: A boolean value the determine whether to return a null
object if the list is invalid. True will return the null on onvalid.

Returns
List: A List object containing the UIDs or UserIDs.

Example

// Normally not used directly
List oUsers = NormalizeUserList(bp, "UID1,UID2,UID3");

RemoveFromGroup
This method will remove the User the specified group.

Parameters
GID: The ID of the group from which to remove the user.
Group: The actual group object from which to remove the user.

Returns
None

Example

var oUser = User.GetUserByUserID(bp, "UID");
var oGroup = Group.GetGroupByName(bp, "GroupName");
oUser.RemoveFromGroup(oGroup);

RemoveSharedDelegate
This method will remove a User from a shared delegation.

Parameters
pRemoveUID: The UID of the user to remove from shared delegation.
Group: The actual group object from which to remove the user.

Developer's Reference Guide | 255

BP Logix Inc
Process Director Documentation

Returns
Boolean: True if the operation succeeds.

Example

// Remove a user from shared delegation
CurrentUser.RemoveSharedDelegate("UID");

ReplaceWithUser
This method will replace a Process Director user with a specified replacement user.

Parameters
ReplacementUID: The UID of the replacement user.

Returns
Boolean: True of the operation succeeds.

Example

var oUser = User.GetUserByUserID(bp, "UID");
oUser.ReplaceWithUser("ReplacementUID");

SetCurrentUserContext
This method changes or sets the current user context.

Parameters
BP: The BP Logix environment.
UID: The string UID or UserID of the user.

Returns
Boolean: True if the operation succeeds.

Example

bool curr = SetCurrentUserContext("UID");

UnDelegateUser
This method enables a user to un-delegate all tasks.

Parameters
None.

256 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Returns
Boolean: True if the operation succeeds.

Example

// Un-delegate current users tasks
CurrentUser.UnDelegateUser();

UnlockUserAccount
This method unlocks the user account for a specified user.

Parameters
UID: The UID of the user account to unlock.

Returns
Boolean: True if the operation succeeds.

Example

bool unlocked = UnlockUserAccount("UID");

UpdateLastActivityTime
This method will update the user object so set the current time as the last activity
time for that user.

Parameters
None.

Returns
Boolean: True if the operation succeeds.
Example

// Update the last activity time for the user
CurrentUser.UpdateLastActivityTime();

UpdateUser
This method will update the user object in the database with any changes made to
the object’s properties (e.g. “UserID”, “UserName”, etc.)

Parameters
None.

Developer's Reference Guide | 257

BP Logix Inc
Process Director Documentation

Returns
Boolean: True if the operation succeeds.
Example

// Select a user
var oUser = User.GetUserByUserID(bp, "UID");

// Change the user's Company name
oUser.Company= "MyCompany";

// Update the user
oUser.UpdateUser();

UserExists
This method enables you to check to see if a user exists.

Parameters
BP: The BP Logix environment.
pUserID: A string UserID.

Optional Parameters
pAuthType: A User.AuthType object specifying the authorization type (Unknown,
BuiltIn, Windows, etc.). If this parameter is omitted, then Process Director will
default this parameter to User.eAuth.BuiltIn.

Returns
Boolean: True if the user exists.

Example

bool exists = UserExists(bp, "UID", User.eAuth.BuiltIn);

Workflow Class

The Workflow object is the legacy process model used in early ver-
sions of Process Director. BP Logix recommends the use of the Process
Timeline object, and not the Workflow object. The Workflow object
remains in the product for backwards compatibility, but doesn't receive
any new functionality updates, other than required bug fixes. No new fea-

258 | Developer's Reference Guide

Process Timelines.htm
Process Timelines.htm

BP Logix Inc
Process Director Documentation

tures have been added to this object since Process Director v4.5. All new
process-based functionality is solely added to the Process Timeline.

This object represents a Workflow (definition and/or instance).
When developing Form scripts (in the various callback methods such as BP_Event)
or Workflow scripts, you are automatically given an instance of the “current” Work-
flow with the CurrentWorkflow variable.
This object is derived from the Process class, which is, in turn, derived from the
ContentObject class. All properties and methods from the ContentObject and Pro-
cess classes are supported for this object, plus the properties below.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

WFID String The ID of the Workflow
definition

WFINSTID String The ID of the optional Work-
flow instance

Methods
AddToWorkflow
This API will add an item to a Workflow instance. This is an overloaded method
with the following possible declarations:
public bool AddToWorkflow(string ID, ObjectType Type)

public bool AddToWorkflow (string ID, ObjectType Type, string
Group)

Parameters
ID: ID of the object to add to the Workflow.
Type: Type of the object to add to the Workflow.
Group: Optional Group of the object to add to the Workflow.

Returns
Boolean: True if the operation succeeds.

Developer's Reference Guide | 259

BP Logix Inc
Process Director Documentation

Example

var oWorkflowInstance = Workflow.GetWorkflowByWFINSTID(bp,
"WFINSTID");
oWorkflowInstance.AddToWorkflow("OBJID", ObjectType.Document);

Cancel
This API will cancel a running Workflow instance.

Parameters
none

Returns
Boolean: True if the operation succeeds.

Example

var oWorkflowInstance = Workflow.GetWorkflowByWFINSTID(bp,
"WFINSTID");
oWorkflowInstance.Cancel();

GetChildren
This API will get all children of the Workflow instance.

Parameters
ObjectType: Optional filter of object types to return.
MapType: Optional filter of map types to return.
GroupName: Optional filter of items in a Group to return.

Returns
List<ContentObject>: List of ContentObjects or null if the operation fails.

Example

var oWorkflowInstance = Workflow.GetWorkflowByWFINSTID(bp,
"WFINSTID");
// Gets all Workflow items in a named group
var MyChildren = oWorkflowInstance.GetChildren("GroupName");

GetWorkflowStepByName

260 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

This API will get the specified WorkflowStep. This is an overloaded method with the
following possible declarations:
public WorkflowStep GetWorkflowStepByName(string pStepName)

public static WorkflowStep GetWorkflowStepByName(bp BP, Workflow
pWorkflow,
 string
pStepName)

Parameters
BP: The bp environment.
pStepName: The name of the Workflow Step to get.
pWorkFlow: The Workflow object containing the step.

Returns
WorkflowStep: The actual WorkflowStep or null if the operation fails.

Example

var oWorkflowInstance = Workflow.GetWorkflowByWFINSTID(bp,
"WFINSTID");
var ApproveStep = oWorkflowInstance.GetWorkflowStepByName
("StepName");

GetWorkflowByWFID (Static Method)
This API will get a Workflow definition object from the specified ID.

Parameters
BP: The bp environment.
WFID: The ID of the Workflow definition to retrieve.

Returns
Workflow:Will return null if Workflow isn't found.

Example

// Normally not used directly
var oWorkflowDef = Workflow.GetWorkflowByWFID(bp, "WFID");

GetWorkflowByWFINSTID (Static Method)
This API will get a Workflow instance object from the specified ID.

Developer's Reference Guide | 261

BP Logix Inc
Process Director Documentation

Parameters
BP: The bp environment.
WFINSTID: The ID of the Workflow instance to retrieve.

Returns
Workflow:Will return null if Workflow isn't found.

Example

// Normally not used directly
var oWorkflowInstance = Workflow.GetWorkflowByWFINSTID(bp,
"WFINSTID");

JumpToStep
This API will jump to a specific Workflow Step.

Parameters
JumpFrom:Workflow Step name to jump from.
JumpTo:Workflow Step name to jump to.

Returns
Boolean: True if the operation succeeds.

Example

var oWorkflowInstance = Workflow.GetWorkflowByWFINSTID(bp,
"WFINSTID");
// Restarts the Workflow instance at a specific step
oWorkflowInst.JumpToStep("FromStepName","ToStepName");

JumpToStepID
This API will jump to a specific Workflow Step.

Parameters
FromSTID:Workflow Step ID to jump from.
ToSTID:Workflow Step ID to jump to.

Returns
Boolean: True if the operation succeeds.

262 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

var oWorkflowInstance = Workflow.GetWorkflowByWFINSTID(bp,
"WFINSTID");
// Restarts the Workflow instance at a specific step
oWorkflowInst.JumpToStepID("FromSTEPID", "ToSTEPID");

PostEvent
This API will Post an event to a Workflow that is waiting on a wait step. This is an
overloaded method with the following possible declarations:
public bool PostEvent(string EventName)

public static bool PostEvent (bp BP, string WFINSTID, string
EventName)

Parameters
BP: The bp environment.
WFINSTID: The ID of the Workflow instance to retrieve.
EventName: The name of the event to Post.

Returns
Boolean: True if the operation succeeds.

Example

// Wake up a Workflow
Workflow.PostEvent(bp, "WFID", "EventName");

ReStart
This API will start a Workflow Step that has previously completed.

Parameters
RestartStep: The WorkFlowStep object of the step to restart.

Returns
Boolean: True if the operation succeeds.

Example

// Restarts the Workflow Step
WorkflowStep myStep = GetWorkflowStepByName("StepName");
ReStart(myStep);

Developer's Reference Guide | 263

BP Logix Inc
Process Director Documentation

WorkflowStep Class

The Workflow object is the legacy process model used in early ver-
sions of Process Director. BP Logix recommends the use of the Process
Timeline object, and not the Workflow object. The Workflow object
remains in the product for backwards compatibility, but doesn't receive
any new functionality updates, other than required bug fixes. No new fea-
tures have been added to this object since Process Director v4.5. All new
process-based functionality is solely added to the Process Timeline.

This object represents a Workflow Step.
This object is derived from the ProcessTask class. All properties and methods from
the ProcessTask are supported for this object, plus the properties below.
When developing Form scripts (in the various callback methods such as BP_Event)
or Workflow scripts, you are automatically given an instance of the “current” Work-
flow with the CurrentWorkflowStep variable.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

WFID String The ID of the Workflow
definition

STID String The ID of the Workflow
Step

StepName String The name of this step

WFINSTID String The ID of the Workflow
instance

STINSTID String The ID of the Workflow
Step instance

WfInst WorkflowInstance
Object

The Workflow instance
object that contains this
step

Message String The optional message if

264 | Developer's Reference Guide

Process Timelines.htm
Process Timelines.htm

BP Logix Inc
Process Director Documentation

PROPERTY NAME DATA TYPE DESCRIPTION

this step is complete

Error Boolean Is the Workflow Step in an
error state?

Methods
GetWorkflowStepByName (Static Method)
This API will get a Workflow Step object from the specified Name.

Parameters
BP: The bp environment.
Workflow: The Workflow object.
StepName: The name of the step to get.

Returns
WorkflowStep:Will return null if Workflow Step isn't found.

Example

var var oWorkflow = Workflow.GetWorkflowByWFID(bp, "WFID");
var oWorkflowStep = WorkflowStep.GetWorkflowStepByName(bp,

oMyWorkflow, "StepName");

GetWorkflowStepBySTID (Static Method)
This API will get a Workflow Step definition object from the specified ID.

Parameters
BP: The bp environment.
STID: The ID of the Workflow Step to retrieve.

Returns
WorkflowStep:Will return null if Workflow Step isn't found.

Example

// Normally not used directly
var oWorkflowStepDef = WorkflowStep.GetWorkflowStepBySTID(bp,
"STID");

GetWorkflowStepBySTINSTID (Static Method)

Developer's Reference Guide | 265

BP Logix Inc
Process Director Documentation

This API will get a Workflow Step instance object from the specified ID.

Parameters
BP: The bp environment.
STINSTID: The ID of the Workflow Step instance to retrieve.

Returns
WorkflowStep:Will return null if Workflow Step isn't found.

Example

// Normally not used directly
var oWorkflowStepInst = WorkflowStep.GetWorkflowStepBySTINSTID
(bp, "STINSTID");

JumpToStep
This API will set the Workflow’s running step from the current (this) step to a dif-
ferent step. This is an overloaded method with the following possible declarations:
public bool JumpToStep(string pStepName)

public bool JumpToStep(string pStepName, string pAdminUID)

public bool JumpToStep(string pStepName, string pAdminUID, string
pAdminComment)

Parameters
StepName: The name of the step to which to jump (the destination step).
AdminUID: Optional UID of the user which caused the step jump.
AdminComment: Optional remark on the reason for the jump.

Returns
Boolean: True if the operation succeeds.

Example

// Jump from the current step to the “Approve Request” step
CurrentWorkflowStep.JumpToStep("StepName");

JumpToStepID
This API will set the Workflow’s running step from the current (this) step to a dif-
ferent step. This is an overloaded method with the following possible declarations:

266 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

public bool JumpToStepID(string pSTID)

public bool JumpToStepID(string pSTID, string pAdminUID)

public bool JumpToStepID(string pSTID, string pAdminUID, string
pAdminComment)

Parameters
pSTID: The ID of the step to which to jump (the destination step)
pAdminUID: Optional UID of the user which caused the step jump
pAdminComment: Optional remark on the reason for the jump

Returns
Boolean: True if the operation succeeds.

Example

// Jump from the current step a named step
var wfStep = WorkflowStep.GetWorkflowStepByName(bp,
 CurrentWorkflow, "StepName");
CurrentWorkflowStep.JumpToStep(wfStep.STID);

WorkflowStepUser Class

The Workflow object is the legacy process model used in early ver-
sions of Process Director. BP Logix recommends the use of the Process
Timeline object, and not the Workflow object. The Workflow object
remains in the product for backwards compatibility, but doesn't receive
any new functionality updates, other than required bug fixes. No new fea-
tures have been added to this object since Process Director v4.5. All new
process-based functionality is solely added to the Process Timeline.

This object represents a user in a Workflow Step.
When developing Form scripts (in the various callback methods such as BP_Event)
or Workflow scripts, you are automatically given an instance of the “current” Work-
flow User with the CurrentWorkflowStepUser variable.

Properties

Developer's Reference Guide | 267

Process Timelines.htm
Process Timelines.htm

BP Logix Inc
Process Director Documentation

PROPERTY NAME DATA TYPE DESCRIPTION

WFID String The ID of the Workflow
definition

STID String The ID of the Workflow
Step

SUID String The ID of the Workflow
Step user

TLID String The optional task list ID

WFINSTID String The ID of the Workflow
instance

STINSTID String The ID of the step instance

SUINSTID String The ID of the step user
instance

User User Object The user object

Status Integer The status of this user in
this Workflow Step. Please
see the table definition of
tblProjActivityUserInst for
status codes.

Comment String If the user completed this
task, the optional com-
ments

Start DateTime The time that the user star-
ted in this step

End DateTime The time that the user com-
pleted this step

TermReason Integer The termination reason for
this user in this step. Please
see the Classes topic for a
list of termination reasons
and their associated
integer code.

268 | Developer's Reference Guide

Table Definitions.htm

BP Logix Inc
Process Director Documentation

PROPERTY NAME DATA TYPE DESCRIPTION

BranchName String The branch the user selec-
ted to complete this step

SubTaskName String The optional name of the
sub task assigned to this
Task User

Methods
GetWorkflowStepUserBySUINSTID (Static Method)
This API will get a Workflow Step definition object from the specified ID.

Parameters
BP: The bp environment.
SUINSTID: The ID of the Workflow Step user to retrieve.

Returns
WorkflowStepUser:Will return null if Workflow Step isn't found.

Example

// Normally not used directly
var oWorkflowStepUser = Work-
flowStepUser.GetWorkflowStepUserBySUINSTID(bp, "SUINSTID");

Restart
This API will restart a Workflow Step for a specified user. There are two overloads
for calling this function:
WorkflowStep.Restart(string UID)

WorkflowStep.Restart(string UID, string Comments)

Parameters
UID: The UID of the user to restart in the Workflow Step.
Comments: Optional parameter containing the Routing Slip comments to add to
the Workflow Step.

Returns
None

Developer's Reference Guide | 269

BP Logix Inc
Process Director Documentation

Example

var oWorkflowStepInstance = Work-
flowStep.GetWorkflowStepBySTINSTID(bp, "STINSTID");
oWorkflowStepInstance.Restart();

Workspace Class
This object represents a Workspace object.

Properties

PROPERTY NAME DATA TYPE DESCRIPTION

oPROFILEID String The ID of the Workspace

Name String The name of the Work-
space

Description String The description of the Work-
space.

Methods
GetWorkspaceByName
This API will return the Workspace object specified by the Name.

Parameters
bp: The Process Director environment.
pName: The string Name of the Workspace.

Returns
A Workspace object.

Example

var myWS = Workspace.GetWorkspaceByName(bp, "WorkspaceName");

GetWorkspaceByPROFILEID
This API will return the Workspace object specified by the Profile ID.

Parameters
bp: The Process Director environment.

270 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

pProfileID: The string Profile ID of the Workspace.

Returns
A Workspace object.

Example

var myWS = Workspace.GetWorkspaceByPROFILEID(bp, "PROFILEID");

JavaScript APIs
Process Director uses some JavaScript APIs to perform operations to manipulate
Form data, or to Open Forms in special circumstances as described below.

Form Data #
Process Director enables you to get or set Form Field values through JavaScript.
Using the JavaScript API enables you to use the appropriate JavaScript Input field
attributes for the field type you wish to set. For instance, the value of a text box can
be set using the ".value" attribute, while the value of a checkbox can be set using
the "checked" attribute.
When using JavaScript, you can get or set the value of a field using the following
syntax:
CurrentForm.FormControls["FieldName"].valueattribute

Examples

// Set the Value of a Text Box
CurrentForm.FormControls["Text1"].value = "MyValue";

//Get the value of a text box
var myValue = CurrentForm.FormControls["Text1"].value;

// Set the value of a checkbox
CurrentForm.FormControls["Checkbox1"].checked = true;

// Get the Value of a checkbox
var myValue = CurrentForm.FormControls["Checkbox1"].checked;

JavaScript can be used directly on the Form by inserting an HTML control on the
Form and erasing the Name property of the HTML control.

Developer's Reference Guide | 271

BP Logix Inc
Process Director Documentation

iPopupSimple Command #
When creating a Workspace for a new application, it's possible to display a Process
Director form as the primary portlet for the Workspace. You might wish to do this
when you want the workspace to have a highly customized display and layout,
rather than displaying the standard Knowledge Views/Task List in the standard
workspace portlets. Using a Form in this manner enables you to design a work-
space with custom colors, object locations, branding, etc.
There is one drawback to this method of UI design, in that Forms do not call other
forms directly in Process Director. In most cases, the purpose of a Form is to collect
data about a specific process instance, which can be submitted and used to
view/update the data used in the process instance. This Form usage assumes that
the primary form will not call additional Forms and, if additional forms are needed,
they can be added to the Process Timeline via the Form Actions Timeline Activity.
Indeed one can switch back and forth between Forms using this Timeline Activity
type.
Using a Form as the primary dashboard UI for a Workspace, therefore, represents
a unique challenge, in that you will probably want users to have the ability to open
Forms, Knowledge Views, or other objects, which is a capability that forms don't
have. To enable this feature, a JavaScript command, iPopupSimple, enables you to
configure a Form button to open a new object instance in a popup window directly
from the Form. This JavaScript command takes a single parameter, which is the
URL of the Process Director object you wish to open, e.g.:
iPopupSimple('URLToOpen');

This command is conceptually very simple, but using it in an integration, especially
when you'd like to use different buttons to open different Process Director objects,
adds a fair amount of complexity. Since that's so, let's take a look at how to imple-
ment iPopupSimple using an implementation example.
First, the Workspace for our sample application is set to use a single portlet for the
workspace that displays the Form we wish to use as the Workspace Dashboard.

272 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

In this example, the Submitter Dashboard is a Process Director Form that will dis-
play the application UI. When displayed to the end user, it will look like this:

All of the objects the user sees are designed into the Form. There are several but-
tons on this form, so for the purposes of this example, let's concentrate solely on
the CreatePub button at the top of the Form, which is labeled Create Publication.
This button must, when clicked, open a new Form that the user can fill out and sub-
mit. Let's take a close look at top portion of the Submitter Dashboard Form in the
Online Form Designer.

In addition to the CreatePub button, there's also a Content Picker control on the
left side of the page, named CreateForm. The CreateForm control enables us to
specify the Form we want to open when the CreatePub button is clicked. We do
this by setting the Default Value property of the CreateForm control to a Content
Item, and choosing the Publication Project Form as the Content Item.

Developer's Reference Guide | 273

BP Logix Inc
Process Director Documentation

We'll use the value of the CreateForm control to help construct the URL we need to
call with the iPopupSimple command.
The CreatePub button is a simple Button control. In this case, since we'll be using it
to call the iPopupSimple JavaScript command, we'll use its OnClientClick prop-
erty to call iPopupSimple by placing the command in that property box.

274 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Normally, clicking a Button control prompts a reload of the Form to perform some
sort of server-side action. We don't want to do that in this case, so we're using the
OnClientClick property to capture the button click event on the client side, which is
to say, in the browser, rather than prompting a server-side event.
The full syntax of the iPopupSimple command we're using is:
iPopupSimple (' {Interface_ URL}form.aspx?formid= {:CreateForm,-
format=ID}');

To shorten the URL we need to provide, the JavaScript URL parameter we're
passing uses two system variables. INTERFACE_URL provides the base URL of our
Process Director Installation, ending in a forward slash, e.g., HTTPS://pub-
lications.bplogix.com/. The Form System Variable for the CreateForm Con-
tent Picker is formatted to return the FormID of the Form we want to open as a
new instance. At run-time, this configuration ensures that, when the CreatePub but-
ton is clicked, the Publication Project Form is opened in a new popup window, just
as Forms normally open in Process Director.

Developer's Reference Guide | 275

BP Logix Inc
Process Director Documentation

Technically, we don't need to use either of these two system variables to construct
the URL parameter that we're passing to iPopupSimple. We could simply hard-
code the Form URL into the command. But, that would require typing a long, com-
plex URL into the OnClientClick property box. Moreover, should we need to change
the Form we want to open with this button, such as after an update to the applic-
ation, we'd need to come back and re-type a different (long and complex) URL
again. With this configuration, if we need to change the Form we want to open, we
just have to change the Default Value of the CreateForm Content Picker to a dif-
ferent Form to update the URL parameter automatically.
In this example, we've only discussed opening a Form instance, but using the same
process, we can also open Knowledge Views, Charts, or other Content List objects
as well. All we need to do is provide the appropriate Content Picker and Button con-
trols, and configure the onClientClick property for each of the buttons we need.

Language/Culture Localization
Customizing the Process Director UI
The default language of Process Director is US English. All built-in system strings
are stored in the \Program Files\BP Logix\Process Director\website\App_Glob-
alResources\Resource.resx file (a standard .NET resource file containing strings).
To localize these to another language, create a separate file called Resource.[Cul-
ture].resx in the same folder (where [Culture] is the language/culture type, as spe-
cified in MSDN.). As an example, a file for German localization would be named
"Resource.de.resx". This file will contain the translated strings. You only need to
include the strings that have been translated into this file.
At runtime, the system will first try to find a string in the Resource.[Culture].resx
file, and then it will try the default Resource.resx file. Since the Resource.resx file is
the final fallback file in this hierarchy, this means that you can also create a cus-
tomized US English resources file to change specific items of the Process Director
user interface text by creating a Resource.en-US.resx file. Process Director will
check that file first, and use any custom text from that file, before falling back to
the main Resource.resx file for the standard UI text items.
It is also possible to completely localize the entire Process Director UI by making a
copy of the Resource.resx your master translation file. This is, of course a very, very

276 | Developer's Reference Guide

http://msdn.microsoft.com/en-us/library/system.globalization.cultureinfo(VS.80).aspx

BP Logix Inc
Process Director Documentation

large file, and you'd need to also add the custom strings you want to translate to
each copy of this file.

Do not modify the Resource.resx file; it will be overwritten on any
upgrade/patch.

Each user is able to set their own culture/language in their profile, and the system
will use the appropriate resx file to display the customized interface for their selec-
ted culture.
Once you've edited the RESX files, you'll need to use the Locales custom variable to
add the Cultures to Process Director.

l Resource.en-US.resx for US English
l Resource.it.resx for Italian
l Resource.ja-JP.resx for Japanese
l etc.

See MSDN for the various "culture strings" (i.e. the portion of the file name
between “Resource.” And “.resx”).
Edit the strings in each new Resource.[culture_string].resx file for the specific lan-
guage.
Copy all the translated RESX files into the \Program Files\BP Logix\Process Dir-
ector\website\App_GlobalResources\ folder.
Ensure that the [Culture] portion of the file name for the RESX file matches the
pValue parameter used in the Locales custom variable.

Form Customization/Localization
In addition to the ability to localize Process Director's user interface, Forms can
also be localized so that the same Form can be used for users from different cul-
tures. Localized Forms will automatically display all of the Form field labels in the
language appropriate to the user's culture.
Localizing Forms requires two steps:

1. Placing the translations for the Form field labels in the appropriate RESX file
for each culture.

Developer's Reference Guide | 277

http://msdn.microsoft.com/en-us/library/system.globalization.cultureinfo(VS.80).aspx

BP Logix Inc
Process Director Documentation

2. Using variables for Form labels instead of using fixed text (e.g., First Name,
Last Name, etc.).

Let's look at each step separately, along with some best practices to implement
when performing each step.

Placing strings in the RESX file
Each time you add a field to a Form, you must create a new culture string for that
field's label in the RESX file for each culture. When you do so, it would be wise to
create a naming convention for Form Field strings. For example, for a common
field, such a "First Name", you might create a resource string name like
"FirstName".
In the /website/App_GlobalResources folder of your Process Director installation,
create a master string file (a standard .NET RESX file) named "strings.resx" that
contains all custom strings that you want to use. This file uses the default language
for Process Director, which is US English, so there's no need to specifically create a
US English-version RESX file, though you'll need to create a language specific
strings file for other languages, e.g., strings.es.resx for Spanish.
Every RESX file must have a resource string entry for the field's label, with a dif-
ferent value in each file. So, if you have a RESX file for US English, Spanish, and Ger-
man the following entries would appear in each RESX file for the FirstName string:

l strings.resx (US English): frmCommonFirstName "First Name"
l strings.es.resx (Spanish): frmCommonFirstName "Nombre de Pila"
l strings.de.resx (German): frmCommonFirstName "Vorname"

Using variables for Form field labels
You can access your own custom strings using a system variable such as
{string:My_String} which will be replaced at run time with the localized string. In
the Form template, for each field label you'd like to customize, use a System Vari-
able or Label control, or just type the system variable in plain text.

278 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Additionally, you can use the comments portion of the RESX file to specifically
identify which forms use each string.

In the example above, the implementers can, in addition to the form field labels,
also add common activity results, such as "Approve" by using System Variables
such as {string:Approve} that will be replaced with the localized version of the
string "Approve" for the current user's culture. As you can see in this example,
Form fields have a comment that marks them as common Form fields, while
"Approve" and "Reject" are listed as common results.
Now, we can see how the Form will display for each culture:

Developer's Reference Guide | 279

BP Logix Inc
Process Director Documentation

English

Spanish

280 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

German

Developer's Reference Guide | 281

BP Logix Inc
Process Director Documentation

Customization File
You can customize your Process Director installation by editing the customization
file, vars.cs.ascx, that's located in the \Program Files\BP Logix\Process Dir-
ector\website\custom\ directory of your Process Director installation. This dir-
ectory is created during the initial installation of the product. The files in this
directory are not overwritten during subsequent installations, such as when you
perform an upgrade to a new version of Process Director.
The customization file is separated into several methods, each of which enables
you to customize some aspect of Process Director. Please expand the code
example below to see an example of the customization file and its organization.

Code Example
The following are called only for the vars files:

// Called BEFORE database initialized
public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
}

// Called AFTER database initialized
public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Before making SDK calls that access the database,
ensure DB has
 // been opened by checking bp.DBOpenComplete
}

// Called on pages that are "in" a partition
public override void SetPartitionVars(BPLo-
gix.WorkflowDirector.SDK.bp bp,
 BPLogix.WorkflowDirector-
.SDK.Partition Partition)
{
}

/*
// This override allows you to return different values based
on a token
// The default operator simply stores the values in a Dic-
tionary
// Example: bp.Vars["GlobalVar1"] = "My Value";

282 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

public override string this[string pToken]
{
 get

{
 return "Token value: " + pToken;
 }
 set

{
 }
}
*/

// Called on every login for customizing the error checking of
a user
public override bool CanLogin(BPLogix.WorkflowDirector.SDK.bp
bp,
 Login_Struct pLoginStruct,
 out string pErrorString)
{
 pErrorString = null;

 /*
 if (pLoginStruct.UserID.ToUpper() == "BAD_USER")

{
 pErrorString = "That is a bad user";
 return false; // Prevent login
 }
 */
 return true; // Allow login
}

// Called to test if user can call specific web service
public override bool CanCallService(BPLo-
gix.WorkflowDirector.SDK.bp bp,
User CurrentUser, string API)
{
 return true;
}

// Called to test if we can disable this user
public override bool CanDisableUser(BPLo-
gix.WorkflowDirector.SDK.bp bp,
 string UID,
 out string Reason)
{
 Reason = null;
 return true;
}

Developer's Reference Guide | 283

BP Logix Inc
Process Director Documentation

// Called after every successful login
public override void LoginComplete(BPLo-
gix.WorkflowDirector.SDK.bp bp,
 Login_Struct LoginStruct,
 User CurrentUser)
{
}

// Called after every logoff
public override void LogoffComplete(BPLo-
gix.WorkflowDirector.SDK.bp bp,
 User LogoffUser)
{
}

// Called to return the optional page to navigate to after the
login occurs
public override string GetFirstPage(BPLo-
gix.WorkflowDirector.SDK.bp bp,
 string pFirstPage)
{
 return base.GetFirstPage(bp, pFirstPage);
}

// Called when a user clicks on "forgot password". In this
callback, you can set a
// new password for the user,
// and you can force the user to change their password after
their first login.
// Return true to allow the password retrieval, or false to
prevent the password retrieval.
// Note that fAllowRetrievePassword must be set to true to
allow any user to
// retrieve their password. Only built-in (vs Active Dir-
ectory) users
// can retrieve their password.
public override bool ForgotPassword(BPLo-
gix.WorkflowDirector.SDK.bp bp,
 string UserID,
 string OldPassword,
 out string NewPassword,
 out bool MustChangePass-
word)
{
 NewPassword = null; // Do not change old password
 MustChangePassword = false; // Do not force user to change
password after login
 return true;
}

284 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

// Called to validate a password change for a user
// Return true to allow the password change, or false to pre-
vent
// the change. You can set the Reason parameter
// to a string representing the reason for the invalid pass-
word
// (e.g.,, password too short)
// NOTE: This is only enabled with the "Compliance Option"
public override bool ValidatePassword(BPLo-
gix.WorkflowDirector.SDK.bp bp,
 string UserID,
 string OldPassword,
 string NewPassword,
 out string Reason)
{
 Reason = null;
 /*
 // Example to ensure all new passwords are at least 5 char-
acters long
 if (NewPassword.Length < 5)

{
 Reason = "password too small";
 return false;
 }
 */
 return true;
}

// Called to customize the string that is displayed for each
user.
// This will set the display string for the entire product.
// NOTE: You must set fAllowCustomUserString to true in order
for this exit to be called
public override void UserDisplayString(BPLo-
gix.WorkflowDirector.SDK.bp bp,
 ref string UserString,
 User UserClass)
{
 /*
 // This will add the custom string to the end of the user
display string
 if (!UserClass.CustomString.bpIsNullOrEmpty())

{
 UserString = UserString + " / " + User-
Class.CustomString;
 }
 */
}

Developer's Reference Guide | 285

BP Logix Inc
Process Director Documentation

// Called to customize the string that is displayed for each
user.
//This will set the display string only in the object that
calls this function.
// NOTE: You must set fAllowCustomUserString to true in order
for this exit to be called
public override void UserDisplayString2(BPLo-
gix.WorkflowDirector.SDK.bp bp,
 ref string UserString,
 User UserClass)
{
}

// This event is called prior to synchronizing a user from Act-
ive Directory
// using the AD Sync Profiles.
// Returning true allows the user to be sync'ed. Returning
false will
// prevent the user from being sync'ed.
public override bool AD_Sync_User(BPLo-
gix.WorkflowDirector.SDK.bp bp,
 string ProfileName,
 System.DirectoryServices.AccountManage-
ment.UserPrincipal User)
{
 /*
 // Do not sync the user if the email address is null
 if (string.IsNullOrEmpty(User.EmailAddress))
 return false;
 */
 return true;
}

// This event is called after synchronizing a user from Active
Directory using the AD Sync Profiles.
// This can be used, for example, to modify the user record
after the sync.
public override void AD_Sync_User_Complete(BPLo-
gix.WorkflowDirector.SDK.bp bp,
 string ProfileName)
 System.DirectoryServices.AccountMan-
agement.UserPrincipal User,
 string UID)
{
 /*
 var TempUser =

286 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

BPLogix.WorkflowDirector.SDK.User.GetUserByID(bp, UID);
 if (TempUser != null)

{
 TempUser.CustomString = "Some custom value";
 TempUser.UpdateUser();
 }
 */
}

// This event is called prior to synchronizing a group from
Active Directory
// using the AD Sync Profiles.
// Returning true allows the group to be sync'ed.
// Returning false will prevent the group from being sync'ed.
public override bool AD_Sync_Group(BPLo-
gix.WorkflowDirector.SDK.bp bp,
 string ProfileName,
 System.DirectoryServices.AccountManag-
ement.GroupPrincipal Group)
{
 return true;
}

// This event is called after synchronizing a group from Act-
ive Directory using the AD Sync Profiles.
public override void AD_Sync_Group_Complete(BPLo-
gix.WorkflowDirector.SDK.bp bp,
 string ProfileName,
 System.DirectoryServices.AccountManagement.-
GroupPrincipal Group,
 string GID)
{
 /*
 var TempGroup = BPLo-
gix.WorkflowDirector.SDK.Group.GetGroupByID(bp, GID);
 if (TempGroup != null)

{
 }
 */
}

// Called when a sync profile starts / end
public override void AD_Sync_Start(BPLo-
gix.WorkflowDirector.SDK.bp bp,
 string ProfileName,
 string ProfileID,
 bool TestMode)
{
}

Developer's Reference Guide | 287

BP Logix Inc
Process Director Documentation

public override void AD_Sync_End(BPLo-
gix.WorkflowDirector.SDK.bp bp,
 string ProfileName,
 string ProfileID,
 bool TestMode)
{
}

While many different aspects of your installation's operation can be altered via writ-
ing your own C# code in the customization file, the primary customization method
is to use one or more of the many Custom Variables that are already built into the
product, and which provide an easy means of changing the default operation of
the system. The built-in Custom Variables are organized into different categories in
this documentation, as outlined in the Custom Variables topic.

Access to the customization file is generally limited to On-Premise cus-
tomers. Customers with Cloud installations can only access their cus-
tomization file directly via an additional license option that enables them
to access the /custom folder via an SFTP connection. Otherwise, Cloud
customers can submit a technical support ticket that describes the
desired change, and BP Logix will make it for them.

Form Control Styles
Forms have the ability to set the style for Enabled/Disabled form controls,
Required form fields, and form fields in an error state using the “Default Styles”
section on the Form properties page. To modify the list of default styles displayed
in the dropdown, edit the vars.cs.aspx file.

Code Example
public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Form style choices
 // If you comment out the first line, it will append new
values to the
 // default list

bp.Vars.StyleOptions.Clear();

288 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

bp.Vars.StyleOptions.Add("border:3px solid #AD1A10;");
bp.Vars.StyleOptions.Add("border:3px solid red;");
bp.Vars.StyleOptions.Add("border:3px solid blue;");
bp.Vars.StyleOptions.Add("border:1px solid blue;");
bp.Vars.StyleOptions.Add("border:1px dashed blue;");
bp.Vars.StyleOptions.Add("border:1px dotted red;");

}

Creating Your Own Custom Variables
Process Director enables you to set your own system variables in the vars.cs.ascx
file. All custom vars that you create are formatted as strings, so you should use
string syntax when setting the variable's value, i.e., use double quotes ("") around
the value. Process Director will convert custom vars to numbers on the fly if
numeric comparisons or calculations are required. Custom vars that you create are
stored in a custom dictionary as key/value pairs.
There are two methods available in the custom vars file for creating custom vars:
SetSystemVars and PreSetSystemVars. The PreSetSystemVars method is
called prior to initializing the Process Director database, while the SetSystemVars
method is called after database initialization.
In general, this means that the default method to use when creating custom vars is
the PreSetSystemVars method; however, if you need to set the value of the var
based on information stored in the Process Director database, such as the identity
of the user or the workspace in which the user is working, you must use the
SetSystemVars method.
Using the syntax {CustomVar:MY_VAR} elsewhere in Process Director will return
the custom variable (in this case, MY_VAR) value that was defined in the cus-
tomization file.

Code Example
public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // This creates a new custom var that can be accessed from
anywhere
 // within Process Director by using the syntax {Cus-
tomVar:MY_VAR}

bp.Vars["MY_VAR"] = "My string";

Developer's Reference Guide | 289

BP Logix Inc
Process Director Documentation

}

Session Variables
Process Director provides the ability to create session variables. These variables
exist only for the length of a single user session, and are discarded when the
user's session ends, such as when the user logs out of Process Director, or after
the specified period of inactivity that is set in IIS. Session variables can be created
via custom scripting in a Form or process, or inside one of the sections of the cus-
tomization file, depending on when it's necessary to create the variable. For
instance, if you want to set the session variable any time a page loads in a par-
tition, you could set the session variable in the SetPartitionVars method of the
customization file.

Code Example
public override void SetPartitionVars(BPLo-
gix.WorkflowDirector.SDK.bp bp,
 BPLogix.WorkflowDirector.SDK.Partitio-
n Partition)
{

// Default session var
 CurrentUser.SessionObjects["GROUP_ID"] = "";
 var mygroup = BPLo-
gix.WorkflowDirector.SDK.Group.GetGroupByName(bp, "MyGroup");

// Only want to set var for mygroup & valid user
 if (CurrentUser.InGroup(mygroup))

{
// Set the System Variable

 CurrentUser.SessionObjects["GROUP_ID"] =
bp.ConvertSysVarsInString("{BV:MyGroupData.GROUPID,

 $UserId="+CurrentUser.UID.ToString()+"}");
 }
}

Once the session variable has been set, the variable is addressable through code,
or in any Process Director Object using the Session System Variable .

Shared Delegation
Shared Delegation can be universally disabled in the Custom Vars file via the
SharedDelegationAllowed method.

290 | Developer's Reference Guide

Miscellaneous System Variables.htm#SessionVariable
User Delegation.htm#SharedDelegation

BP Logix Inc
Process Director Documentation

Code Example
// We want to disable the shared delegation for the system
public override bool SharedDelegationAllowed
(BPLogix.WorkflowDirector.SDK.bp bp,
 Task TaskList,
 User CurrentUser,
 User
TaskListUser,
 out string
ReasonString)
{

ReasonString = "Reason for disabling";
// Disable Shared Delegation

 return false;
}

Custom Variables
Process Director provides many built-in Custom Variables that control or customize
various functions on the system. Most Custom Variables should be set in the
PreSetSystemVars method of the customization file, but this isn't universally
true. The PreSetSystemVars method is called prior to the system accessing the
Process Director database, while SetSystemVars is called after the database has
been initialized. Any custom setting that relies on information contained in the Pro-
cess Director database, such as the ID of a user or Process Director object, will only
work properly when called from the SetSystemVars method. Please refer to the
documentation's code samples for the system variables you're setting, to ensure
you place each Custom Variable in the appropriate method in the customization
file.
The built-in Custom Variables are arranged into general subject sections to help
make them easier to find in the documentation. To see the Custom Variables for
each subject, you can use the Table of Contents displayed on the upper right
corner of the page, or click on one of the links below.
Active Directory: Active Directory synchronization variables.
Administration: Sets administrative options for the system.
Auditing: Controls the operation of the audit logs.
Collaborative Features: Controls the operation of the CDM/CDA features (for
appropriately licensed installations).

Developer's Reference Guide | 291

Customization File Collaboration.htm

BP Logix Inc
Process Director Documentation

Default Settings: Enable changing the default options for your Process Director
Installation.
LDAP: Controls the operation of LDAP synchronizations.
List Maximums: Controls the maximum number of items returned by various sys-
tem list objects, such as Knowledge Views.
Logs: Controls the operation of the system logging functions.
Miscellaneous: General variables that control various Process Director option-
s/operations.
ML/AI: Controls the operation of Machine Learning/Artifical Intelligence features.
Mobile Application: Controls the operation of the BP Logix Mobile App (for appro-
priately licensed installations).
Password Enforcement: Controls the complexity and security of user passwords.
Process Administration: Enables altering the default settings for who can access
process administration features.
Reporting Tool: Enables altering the default settings of the Advanced Reporting
Component.
REST: Customizes the settings associated with REST data usage.
SAML: Configures the connection to a SAML IdP for external authentication (Feder-
ated Identity).
Social Media: Sets options for accessing data from Social Media applications.
System: Enables altering the general system properties.
Tasks: Enables customizing the default settings related to user tasks.
User Interface: Controls the appearance of the Process Director User Interface.
User Info SlideOut: Enables altering the operation of the User Info SlideOut that
displays their profile to end users.
Users: Controls the operations of various system features relating to users and
user accounts.

Active Directory Custom Variables
You can customize some of the ways in which Process Director interacts with Active
Directory by editing the custom variables in this section of the documentation.

ADAuthNoDomain

292 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Certain Active Directory installations can't accept a domain as part of the cre-
dential validation. This flag can be set to ensure the domain isn't passed to the Act-
ive Directory validation.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Do not use the domain on the credential validation
 bp.Vars.ADAuthNoDomain = true;
}

ADAuthSettings
This variable enables you to configure specific authentication settings for each
domain for validating users at login. The account used for each domain must have
permission to open the Active Directory and validate credentials.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Configure specific administrator accounts to use to val-
idate
 //logins for 2 domains.

bp.Vars.ADAuthSettings.Add(new ADAuthSetting("MY_DOMAIN_
1", "AD_Admin", "pwd1"));

bp.Vars.ADAuthSettings.Add(new ADAuthSetting("MY_DOMAIN_
2", "AD_Admin", "pwd2"));
}

ADGrouphierarchy
This variable enables you to configure the type(s) of groups that the user is a mem-
ber of when using the Active Directory Synch.
Values

VALUE NAME DESCRIPTION DEFAULT

ADGroupHierarchyOptions.AllAuthGroups This will enable
adding the user to
every security group

Developer's Reference Guide | 293

BP Logix Inc
Process Director Documentation

VALUE NAME DESCRIPTION DEFAULT

(even hierarchical)
they are a member
of.

ADGroupHierarchyOptions.AllGroups This will enable
adding the user to
every group (security
AND distribution)
(even hierarchical)
they are a member
of.

ADGroupHierarchyOptions.None setting will only add
the users to the
groups they are dir-
ectly a member of.

Default

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// The default
 // This will enable adding the user to every security
group
 // (even hierarchical) of which they are a member.
 bp.Vars.ADGrouphierarchy = ADGroupHi-
erarchyOptions.AllAuthGroups;

 // This will enable adding the user to every group (secur-
ity AND
 // distribution, even hierarchical) of which they are a
member.
 bp.Vars.ADGrouphierarchy = ADGroupHi-
erarchyOptions.AllGroups;

// This setting will only add the users to the groups of
which they are
 // directly a member
 bp.Vars.ADGrouphierarchy = ADGroupHierarchyOptions.None;
}

AD_NormalOptions

294 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Can be used to configure options used in the PrincipalContext to connect to the
Active Directory server. See the Microsoft documentation for ContextOption Enu-
meration for a description of the options.
The available options are:

l Sys-
tem.Dir-
ectoryServices.AccountManagement.ContextOptions.Negotiate

l Sys-
tem.DirectoryServices.AccountManagement.ContextOptions.Signing

l Sys-
tem.DirectoryServices.AccountManagement.ContextOptions.Sealing

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Set the flags for options for Active Directory
 bp.Vars.AD_NormalOptions =

Sys-
tem.Dir-
ectoryServices.AccountManagement.ContextOptions.Negotiate;
}

ADSSLOptions
Can be used to configure options used in the PrincipalContext to connect to the
Active Directory server for SSL encrypted sessions. See the Microsoft doc-
umentation for ContextOption Enumeration for a description of the options.
The available options are:

l Sys-
tem.Dir-
ectoryServices.AccountManagement.ContextOptions.Negotiate

l Sys-
tem.Dir-
ect-
oryServices.AccountManagement.ContextOptions.SecureSocketLayer

Developer's Reference Guide | 295

http://msdn.microsoft.com/en-us/library/system.directoryservices.accountmanagement.contextoptions(v=VS.90).aspx
http://msdn.microsoft.com/en-us/library/system.directoryservices.accountmanagement.contextoptions(v=VS.90).aspx
http://msdn.microsoft.com/en-us/library/system.directoryservices.accountmanagement.contextoptions(v=VS.90).aspx
http://msdn.microsoft.com/en-us/library/system.directoryservices.accountmanagement.contextoptions(v=VS.90).aspx

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Set the flags for SSL options for Active Directory
 bp.Vars.AD_SSLOptions =

Sys-
tem.Dir-
ect-
oryServices.AccountManagement.ContextOptions.SecureSocketLayer
;
}

AD_SyncUsersByGroupRecurse
Can be used to disable group recursion for Active Directory synchronization, if
needed. The default value for this variable is "true", and should usually remain so.
An issue with Microsoft Windows 2016, however, may cause synchronization to fail
when limiting synchronization to a specific user or group. Setting this value to
"false" can serve as a workaround for this issue.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Disable group recursion for Active Directory syn-
chronization
 bp.Vars.AD_SyncUsersByGroupRecurse = false;
}

fADSyncAllowManagerOtherOU
This boolean variable, when set to "true" enables you to sync a manager with a
user if the manager is synced from a different OU (AD Root Path) than the user.
The default value of this variable is "false".

296 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

//Sync managers from a different OU than the users they
manage

bp.Vars.fADSyncAllowManagerOtherOU = true;
}

fReenableUsersOnSync
This integer variable determines what happens to pre-existing disabled users on
an AD Sync. If set, the sync will re-enable these users, but won't if the flag isn't set.
The default value of this flag is ‘true’.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.fReenableUsersOnSync = false;
}

fSyncExtraLog
This Boolean variable sets whether to turn on extra, Level 0 logging when a sync is
performed. The default value of this variable is False.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.fSyncExtraLog = false;
}

nMaxUsersToDisableOnSync
This integer variable sets the maximum number of users to disable on an Active
Directory Synchronization. The default value of this setting is 30.

Developer's Reference Guide | 297

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.nMaxUsersToDisableOnSync = 30;
}

nMaxPercentUsersToDisableOnSync
This double variable sets the maximum percentage of users to disable on an Active
Directory Synchronization. The default value of this setting is .10, which is 10%.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.nMaxPercentUsersToDisableOnSync = .10;
}

nMinLDAPUsersWithGroupsBeforeDisable
This integer variable sets the minimum number of users that need to have groups
before Process Director removes any group memberships during an Active Dir-
ectory synchronization. The default value of this variable is 10.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.nMinLDAPUsersWithGroupsBeforeDisable = 10;
}

Administration Custom Variables
Process Director 's Administrative settings can be customized by editing the cus-
tom variables in this section.

Activity Checking Custom Variables
Process Director advances processes and send reminders based on recurring activ-
ity checks that occur on the system. These activity checks occur when certain pro-
cess events are initiated, when the Activity Check page is run, or at minimum
intervals specified by default Custom Variable settings.

298 | Developer's Reference Guide

Activity Check.htm

BP Logix Inc
Process Director Documentation

When the activity check page runs, Process Director will determine which timer pro-
cessing functions need to occur. (There are a few things like GOALS that will be
evaluated EVERY time the activity check runs because they are low-impact.) You
can control the timer functions by setting custom variables in the vars.cs cus-
tomization file. These timer functions are NOT controlled by the frequency that the
activity_check.aspx page is scheduled. The following configuration variables con-
trol the amount of time to wait between different types of timer processing. The fol-
lowing Custom Variables control the timing of advancing process steps and
reminders that are time based:

l TimerSecondsCheckWfAdvance: Checks Workflows to advance time-based
steps. The default timing is 6 hours.

l TimerSecondsCheckWfReminders: Checks Workflows to send time-based
reminders. The default timing is 1 hour.

l TimerSecondsCheckProjAdvance: Checks Process Timelines to advance time-
based Activities. The default timing is 6 hours.

l TimerSecondsCheckProjReminders: Checks Process Timelines to send time-
based reminders. The default timing is 1 hour.

For Process Director v5.39 and below, the default timings for Timer-
SecondsCheckWfAdvance and TimerSecondsCheckProjAdvance are set to 2 hours.
This was changed in newer versions as the shorter time limits could use excessive
system resources on very active systems.
Additionally, the fDisableUserPrediction Custom Variable will, when set to "false",
enable more accurate prediction of activity times based on each specific user that
has been assigned to an activity. This setting will consume more system resources
when being used, so the default value for this variable is "true". When set to "true",
prediction will still occur, but with less predictive accuracy.

Developer's Reference Guide | 299

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Default to 6 hours between checking projects for
advance
 // AND prediction calculations (e.g. completed/start when
 // conditions, due dates, etc.)

bp.Vars.TimerSecondsCheckProjAdvance = 60 * 60 * 6;

// default to 1 hour between checking projects for email
reminders

bp.Vars.TimerSecondsCheckProjReminders = 60 * 60 * 1;

// Less accurate user predictions for task completion,
 // but fewer system resources used

bp.Vars.fDisableUserPrediction = true;
}

AllowedExportLocations
The AllowedExportLocations variable is a list of strings that contains all of the
folder locations to where a file export via Knowledge View, Custom Task or other
file location export is allowed.
For instance, this variable enables you to control the locations to which a KView can
export documents when called via a URL. Calling a Knowledge View via URL will
accept a URL Parameter named exportname that enables the Knowledge View to
export a file to a specified file path/file name. Similarly, a file export from a Custom
Task will usually provide a file path property to specify an export location for an
exported document attachment.
To prevent users from exporting files to unwanted locations, or overwriting exist-
ing files, this variable MUST be set. Any attempt to export a file to any folder not lis-
ted in this variable will fail. The locations listed in this system variable will be
treated as parent-level folders, which means that you can write documents to any
location or subfolder below the specified folder location.

300 | Developer's Reference Guide

Knowledge View Operations.htm#URL

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Create List values
 List<string> MyExportLocations = new List<string>();

MyExportLocations.Add(@"C:\Documents");
MyExportLocations.Add(@"C:\Files\Images");

// Apply List values to the Custom Variable
bp.Vars.AllowedExportLocations = MyExportLocations;

}

fEnableEncryptionMigration
This variable, when set to "false", will disable the migration to AES encryption
when upgrading to Process Director v5.44.700 or higher from v5.44.600 or lower.
The default value for this variable is "true".

The encryption system used by Process Director prior to v.5.44.600 has
been deprecated. Setting this value to "false" will prevent encrypted
fields from being upgraded to full AES encryption, and existing encrypted
fields will use the deprecated encryption system, which is being replaced
by AES.

When this value is set to "false", though migration of existing encrypted values
won't occur on upgrade, new encrypted values will still be created using AES,
e.g., submitting a new form instance with encrypted form controls.
Any time data that uses the deprecated encryption is accessed, an ERROR log mes-
sage will be generated as a reminder that migration hasn't yet been performed
(I.e., "ERROR: Deprecated encrypted value detected, please upgrade using Admin-
istration pages."). There won't be any data-loss or corruption, as the system will
recognize both AES and deprecated encryption.

Developer's Reference Guide | 301

BP Logix Inc
Process Director Documentation

Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Turn off AES Encryption Migration
bp.Vars.fEnableEncryptionMigration= false;

}

fAllowCustomUserString
This Custom Variable, when set to "true", enables you to call the custom functions
called UserDisplayString() and UserDisplayString2() in the vars.cs.ascx
Customization File. These functions enable you to control what the display string
looks like for a user in the product.
The UserDisplayString() function sets the display string universally in the
product.
The UserDisplayString2 () function returns the Display string to the loc-
ation/object from which it is being called, to give you the flexibility to only change
the display string for the user in a specific place instead of in the whole product.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Enables you to call the UserDisplayString and User-
DisplayString2 functions.

bp.Vars.fAllowCustomUserString = true;
}

fAuthWindows
This variable, when set to true, enables the use of Windows login security. The
default value for this variable is "false", and is set in the XSD file.
You usually don't turn on this feature on by changing the value of this System Vari-
able. Instead, this feature is enabled in the product in the User Authentication set-
tings by setting the Enable Windows Authentication dropdown to "True" .Windows
login security can't be implemented until the Enable Windows Authentication set-
ting is set to "True".

302 | Developer's Reference Guide

User Authentication Settings.htm
User Authentication Settings.htm

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Windows authentication is disabled

bp.Vars.fAuthWindows = false;
}

fAuthWindowsIntegrated
This variable, when set to true, enables the use of NTLM integration. The default
value for this variable is "true", and is set in the XSD file.
While this variable is set to "true" by default, Windows Integrated Security is set to
"false' by default. You usually turn on this feature in the product in the User
Authentication settings by setting the Enable Windows Authentication dropdown
to "True". Even though the fAuthWindowsIntegrated variable is set to true by
default, windows login security can't be implemented until the Enable Windows
Authentication setting is set to "true".
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // NTLM Integration is disabled.

bp.Vars.fAuthWindowsIntegrated = false;
}

fAutoDST
This variable enables you to override whether daylight savings is used in the time
zone.
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Use CST for everyone

bp.Vars.sTimeZoneID = "Pacific Standard Time";

 // Do not use daylight savings time adjustments
bp.Vars.fAutoDST = false;

}

Developer's Reference Guide | 303

User Authentication Settings.htm
User Authentication Settings.htm

BP Logix Inc
Process Director Documentation

fDisableExcelImport
This variable enables you to control whether the Excel files can be used to auto-
matically populate SQL databases.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Disable the auto-excel import feature

bp.Vars.fDisableExcelImport = false;
}

fDisableKViewAppCaches
This variable, when set to "true", will disable application level caching in the Know-
ledge Views when using a Load Balanced system. The default value for this variable
is "false".
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Disable application-level caching for load balancing
bp.Vars.fDisableKViewAppCaches = true;

}

fDisable_sValueSearch
This variable, when set to "true", will disable the time-consuming update of the
sValueSearch field that takes place during some upgrades. This option enables the
system to be updated and work without using the sValueSearch field. Upgrades
that require this field update can take up to 24 hours. The sValueSearch field was
added to the database to significantly improve search performance. It must be pop-
ulated, however, which can be a very time-consuming process. This population, by
default, happens during the upgrade cycle, which can cause the upgrade to take a
very long time.
You can, when this value is set to "true", skip the field update during the upgrade,
and populate it later using the Troubleshooting section in the IT Admin area in
DEBUG mode. There is a link to update the search value column in tblFormData.
This command could take 24 hours to run, depending on the speed of your

304 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

database. It can be run and re-run and, each time, will pickup where it left off, until
the entire update is complete. This feature enables you to perform the update dur-
ing non-work hours. Once the update has no more records to process you can
remove this variable setting from the vars file to have the searches start using the
new sValueSearch column.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Disable the update to the sValueSearch field
bp.Vars.fDisable_sValueSearch = true;

}

fEnableDenyPermissions
This variable enables Process Director to implement a "Deny" permissions model,
so that users can be specifically denied access to objects. In most cases, the default
Process Director permissions model is adequately hardened, so this variable is set
to "false" by default. There are, however, some use cases for adding specific denial
records. Setting this variable to "true" will turn on the denial permissions model,
but the extra permissions checking that the denial model requires may have some
impact on system performance.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// This will enable denial permissions.
bp.Vars.fEnableDenyPermissions = true;

}

fEnableFormFieldDownload
This variable, when set to "true" enables users to download the form fields in an
excel file, from a link on the Properties tab of the Form Definition. The default
value is "false".

Developer's Reference Guide | 305

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Allow form field downloads in Excel.
bp.Vars.fEnableFormFieldDownload = true;

}

fEnableJSURL
This variable, when set to "true", enables custom forms to pass JavaScript to be
executed after a form completes. The default value for this variable is "false". For
users of Process Director v4.54 and below, this variable must be set to "true" to
enable the Copy Form Data Custom Task to close one form and open another,
when configured to do so.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// This will enable custom forms to pass JavaScript to be
executed
 // after the form completes.
 Vars.fEnableJSURL = true;
}

fEnableOldShowAttach
This variable, when set to "true", disables the Group Name wildcard functionality
for ShowAttach controls. The default value for this variable is "false".
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Disable wildcards for ShowAttach control Group Names
bp.Vars.fEnableOldShowAttach = true;

}

fEnableReferrerProtection
This Boolean variable, when set to "true," enables Process Director to screen for
Cross-Site Request Forgery (CSRF) by ensuring that the HTTP Referrer header is

306 | Developer's Reference Guide

Form Data Mapping Custom Tasks.htm#CopyFormData

BP Logix Inc
Process Director Documentation

valid. CSRF is a type of malicious exploit of a website where unauthorized com-
mands are transmitted from a user that the website trusts. The default value for
this variable is "false".

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// HTML header validation to protect against CSRF
 Vars.fEnableReferrerProtection = true;
}

fRemoveSavedInstForOldUsers
This variable, when set to "true", will remove all saved form instances for a user
that is deleted or disabled. The default value for this variable is "false".

Caution should be used when implementing this feature, as removing
or disabling a user will delete all historical form data for the user.

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Remove form instances for deleted/disabled users
bp.Vars.fRemoveSavedInstForOldUsers = true;

}

fSharedDelegationAllProcesses
This variable , when set to "true" will implement Shared Delegation for all pro-
cesses. The default value for this variable is "false".
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// This will enable shared delegation for all processes.
bp.Vars.fSharedDelegationAllProcesses = true;

}

ForceSecureCookies

Developer's Reference Guide | 307

User Delegation.htm#SharedDelegation

BP Logix Inc
Process Director Documentation

This string variable enables you to set cookies to transmit using only the Secure
Sockets Layer (SSL).
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Force cookies to transmit only via SSL.
bp.Vars.ForceSecureCookies = true;

}

sMobileWebServerURL
This string variable enables customers who have licensed the offline Appenate
server to configure the custom URL of their mobile server for use by Custom Tasks
and other features. This feature is unavailable for versions prior to Process Dir-
ector v5.45, and who have not also licensed the offline mobile feature.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Mobile App server URL
bp.Vars.sMobileWebServerURL = "http://mobile.bplogix.com";

}

fTestMode
These variables allow you to set the system into a test mode. In this mode, Win-
dows Integrated authentication is disabled. This mode enables anyone to log into
the server without a password. Use this setting with caution. It should only be used
on non-production systems to test processes and Forms.
For more information, see the Test Server Methodology topic in the System Admin-
istrator's Guide.

308 | Developer's Reference Guide

Test Server Methodology.htm

BP Logix Inc
Process Director Documentation

Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// **
 // SET THE TEST USER FOR TEST MODE
 // Turn test mode on

bp.Vars.fTestMode = true;

// Set the test email user
bp.Vars.TestUserEmails = User.GetUserByUserID(bp, "my_

test_id");

// ===OR===

 // **
 // SET THE TEST USER EMAIL ADDRESS FOR TEST MODE
 // Turn test mode on

bp.Vars.fTestMode = true;

// Set the test email user
bp.Vars.TestUserEmailAddress = "username@domain.com";

}

fUseNewLoginSessionGUID
This variable, when set to "true", will cause the users session GUID to be cleared
any time a new login occurs. This setting will automatically relog a user who signs
in using same user ID, even if that login is still active on the same computer in a dif-
ferent browser window. Relogging the user will clear all existing session data,
including session variables, and will initiate a new session for the user.
This variable is configured in the PreSetSystemVars() function.
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// This will clear an existing users active session if the
user logs in again

bp.Vars.fUseNewLoginSessionGUID = true;
}

fWebServiceAuth

Developer's Reference Guide | 309

BP Logix Inc
Process Director Documentation

This boolean determines whether authorization is required for Web Service users.
The default value is true.
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Do not require web service authorization
bp.Vars.fWebServiceAuth = false;

}

Locales
This string variable enables you to add additional cultures to process director. In
most cases, each additional culture will have a resource file for localizing strings
for different cultures, as described in the Localization topic of the Developer's
Guide. Once the cultures have been added, they'll appear in the Culture prop-
erty dropdown controls that appear in each user's profile, and in other places.
Parameters
l pName: The string name of the culture, e.g. "Spanish"
l pValue: The string value used to identify the culture, in one of the standard cul-
ture formats, e.g. "es". Process Director will use this value to identify the Cul-
ture name used on the name of the RESX file, e.g., "strings.es.resx".

Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Add Cultures to process Director
bp.Vars.Locales.Add(new NameValue("Spanish", "es"));
bp.Vars.Locales.Add(new NameValue("German", "de"));

}

nMaxActivityStarts
If a Process Timeline instance is determined to be in an endless loop condition, the
problem activity will be placed into an error state. This detection logic to define an
endless loop is controlled through the nMaxActivityStarts, nMaxActiv-
ityStartsInLastSecs, and nTimelineLoopCountStarts variables.

310 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

This variable sets how many times a step restarts in the number of seconds set in
the nMaxActivityStartsInLastSecs variable before considering it in a loop. The
default value is 100.
Example

public override void SetSystemVars (BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.nMaxActivityStarts = 100;
}

nMaxActivityStartsInLastSecs
If a Process Timeline instance is determined to be in an endless loop condition, the
problem activity will be placed into an error state. This detection logic to define an
endless loop is controlled through the nMaxActivityStarts, nMaxActiv-
ityStartsInLastSecs, and nTimelineLoopCountStarts variables.
This variable sets how many seconds to use in loop calculations performed by the
nMaxActivityStarts variable. The default is 60.
Example

public override void SetSystemVars (BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.nMaxActivityStartsInLastSecs = 60;
}

nTimelineLoopCountStarts
If a Process Timeline instance is determined to be in an endless loop condition, the
problem activity will be placed into an error state. This detection logic to define an
endless loop is controlled through the nMaxActivityStarts, nMaxActiv-
ityStartsInLastSecs, and nTimelineLoopCountStarts variables.
This variable sets the number of activities that may be started in one pass of a pro-
cess. The default is 100.

Developer's Reference Guide | 311

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars (BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Set max number of allowable loops to 50

bp.Vars.nTimelineLoopCountStarts = 50;
}

sPDFInterfaceURL
This variable is used to set the optional interface URL to use for converting PDF
files.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // This will set the interface URL to use for converting
files to PDF.

bp.Vars.sPDFInterfaceURL = "http://localhost/";
}

sPickupDirectoryLocation
IIS in Windows 2008 R2 and higher requires a path to be configured to the mail
pickup directory when using the local SMTP server to send email. This is set using
the sPickupDirectoryLocation custom variable. For Process Director v5.31 and
higher, Process Director defaults this pickup directory to the Windows default of
C:\Inetpub\mailroot\Pickup\ so it only needs to be set when it is in a different loc-
ation. Additionally, the setting of this variable won't force emails to use the local
SMTP server when an SMTP Host is specified in the installation settings.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Change the mail pickup directory to a non-default loc-
ation.

bp.Vars.sPickupDirectoryLocation = "C:\nonDe-
fault\directory";
}

sTimeZoneID

312 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

This variable enables you to set the default time zone for the server and for all
users. A time zone configured in a user profile will override this variable for that
user. This string should be set to the Time Zone ID specified by the .NET envir-
onment. Leave this variable null to use the system time zone.
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Use CST for everyone

bp.Vars.sTimeZoneID = "Central Standard Time";

 // Automatically adjust for daylight savings
bp.Vars.fAutoDST = true;

}

The list below shows the possible time zone values as defined by .NET:

Morocco Standard Time GMT Standard Time Romance Standard Time

W. Europe Standard Time Central Europe Standard
Time

Namibia Standard Time

Central European Stand-
ard Time

W. Central Africa Standard
Time

Middle East Standard
Time

Jordan Standard Time GTB Standard Time South Africa Standard
Time

Egypt Standard Time Syria Standard Time E. Europe Standard Time

FLE Standard Time Israel Standard Time Russian Standard Time

Arabic Standard Time Arab Standard Time Arabian Standard Time

E. Africa Standard Time Iran Standard Time Georgian Standard Time

Azerbaijan Standard Time Mauritius Standard Time Ekaterinburg Standard
Time

Caucasus Standard Time Afghanistan Standard
Time

India Standard Time

Pakistan Standard Time West Asia Standard Time Central Asia Standard
Time

Developer's Reference Guide | 313

BP Logix Inc
Process Director Documentation

Sri Lanka Standard Time Nepal Standard Time Myanmar Standard Time

Bangladesh Standard Time N. Central Asia Standard
Time

China Standard Time

SE Asia Standard Time North Asia Standard Time W. Australia Standard
Time

North Asia East Standard
Time

Singapore Standard Time Tokyo Standard Time

Taipei Standard Time Ulaanbaatar Standard
Time

Cen. Australia Standard
Time

Korea Standard Time Yakutsk Standard Time AUS Eastern Standard
Time

AUS Central Standard Time E. Australia Standard Time Vladivostok Standard
Time

West Pacific Standard Time Tasmania Standard Time New Zealand Standard
Time

Magadan Standard Time Central Pacific Standard
Time

Tonga Standard Time

Fiji Standard Time Kamchatka Standard Time Mid- Atlantic Standard
Time

Azores Standard Time Cape Verde Standard
Time

SA Eastern Standard Time

E. South America Standard
Time

Argentina Standard Time Newfoundland Standard
Time

Greenland Standard Time Montevideo Standard
Time

Central Brazilian Standard
Time

Paraguay Standard Time Atlantic Standard Time Venezuela Standard Time

SA Western Standard Time Pacific SA Standard Time US Eastern Standard Time

SA Pacific Standard Time Eastern Standard Time Central Standard Time
(Mexico)

Central America Standard
Time

Central Standard Time Mountain Standard Time
(Mexico)

314 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Canada Central Standard
Time

US Mountain Standard
Time

Pacific Standard Time

Mountain Standard Time Pacific Standard Time
(Mexico)

Samoa Standard Time

Alaskan Standard Time Hawaiian Standard Time

Dateline Standard Time Greenwich Standard Time

sLocalIPs
This variable is used to set the optional list of local IP addresses on the server. This
is used so that any browser request from one of the local IP addresses will be able
to access all administration functions.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // This will set the following IP addresses as "local" IP
 // addresses for this multi-NIC server

bp.Vars.sLocalIPs = "10.1.5.14,10.1.5.32";
}

TestModeIPs
This variable enables you specify the IP addresses that are allowed to connect to a
Process Director Server that has been placed in Test mode, via the fTestMode cus-
tom variable. This is required to allow access to a server that is in test mode. If
accessing the server locally, the IP address doesn't need to be listed.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// **
 // SET THE TEST USER FOR TEST MODE
 // Turn test mode on

bp.Vars.fTestMode = true;

// Set the IP Addresses allowed to access the server
bp.Vars.TestModeIPs.Add("10.1.1.1");

}

Developer's Reference Guide | 315

BP Logix Inc
Process Director Documentation

TestUserEmailAddress
This variable enables you to route all process emails (task list emails, notifications,
etc.) to a single email address. This system variable doesn't require a database
connection. Use this setting with caution. It should only be used on non-pro-
duction systems to test process and Forms. If your installation is configured to
enable users to retrieve forgotten passwords, via the fAllowRetrievePassword cus-
tom variable, the TestUserEmailAddress won't receive password reset request
emails.
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// **
 // SET THE TEST USER FOR TEST MODE
 // Turn test mode on

bp.Vars.fTestMode = true;

 // Set test email
bp.Vars.TestUserEmailAddress = "demo@bplogix.com";

}

TestUserEmails
This variable enables you to route all process emails (task list emails, notifications,
etc) to a single user. Use this setting with caution. It should only be used on non-
production systems to test processes and Forms.
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// **
 // SET THE TEST USER FOR TEST MODE
 // Turn test mode on

bp.Vars.fTestMode = true;

// Specify user to use for test emails
bp.Vars.TestUserEmails = User.GetUserByUserID(bp, "my_

test_id");
}

316 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Auditing Custom Variables
You can alter some of the auditing functions of Process Director by editing the cus-
tom variables listed in this section.

fAuditAnonAccesses
This variable enables Process Director to log various events in the audit logs that
are specific to anonymous access to Process Director. In most cases, the Process
Director installation won't be accessed by outside users with anonymous access,
so this variable is set to "false" by default. Setting this variable to "true" will turn
on the audit logging for these events.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// This will turn on audit logging for anonymous access.
bp.Vars.fAuditAnonAccesses = true;

}

fAuditFormAPICalls
This variable, when set to false, prevents Process Director from auditing form field
changes made by API calls.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Do not audit form field changes made by API calls
bp.Vars.fAuditFormAPICalls = true;

}

fAuditFormViews
This variable determines whether Process Director will write an audit log for all
form views. This can result in a tremendous amount of audit logging when the
value is set to "True". The default for this variable is "False".

Developer's Reference Guide | 317

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Do not store audit logs when a user views
 // a Process Director Page. Setting this value to true may
cause
 // excessive logging and impact system performance.

bp.Vars.fAuditFormViews = true;
}

fAuditLogFileOnly
This variable, when set to the default value of "true", stores the Audit log file in the
file system only, in the /App_Data/log_archive/ folder. When set to false, the audit
log is also stored in the Process Director internal database in addition to the file
system.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Allow Process Director to store the audit log in the
 // internal database, in addition to the log file.

bp.Vars.fAuditLogFileOnly = true;
}

nAuditLogDays
This variable enables you to control the number of days that Process Director
should retain its audit logs. Logs will be archived in the /App_Data/log_archive/
folder. This custom variable is available only with users who have the Compliance
edition for on-site installations, or a cloud installation. The default value for this
variable is "7".
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// archives logs for ten days
bp.Vars.nAuditLogDays= 10;

}

318 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

nMaxAdminAuditRows
This variable enables you to set the maximum number of audit rows to display. The
default is 1000.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// This will set the maximum number of audit rows.
bp.Vars.nMaxAdminAuditRows = 1000;

}

sAuditFieldStyle
This string variable enables you to provide custom CSS styling for the appearance
of audit fields.
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

//These are the default CSS styles for audit fields.
bp.Vars.sAuditFieldStyle = "background-col-

or:#FFFF99!important;";
}

sSkipAuditFields
This string variable enables you to optionally list field names for fields you wish to
skip when auditing by providing a comma-separated list of field names. This will
also enable you to skip all fields in an array or section.
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.sSkipAuditFields = "fieldname1, fieldName2";
}

Audit Logging Variables
For installations that use the Compliance Edition of Process Director, some audit
logging items are sent to the Windows Event Log, in addition to the audit logging

Developer's Reference Guide | 319

BP Logix Inc
Process Director Documentation

that you can access inside Process Director. The logging events sent to the Win-
dows Event Log fall into two categories, Informational and Error entries.
Informational Entries
The following audit events are sent as informational entries to the Windows Event
Log:

l Login
l SyncStart
l PasswordChange
l ReInit
l DelegateOn
l DelegateOff
l ImpersonateOn
l ImpersonateOff
l UserDisabled
l UserEnabled
l AdminReplaceUser
l CreateUser
l DeleteUser

Error Entries
The following audit events are sent as error entries to the Windows Event Log:

l AuthenticateFailed
l UserLockedOut

Additional Audit log events can be added to the default events by using the
EventLogInfoAudits or EventLogErrorAudits custom variable in the Custom Vari-
ables file.

EventLogInfoAudits
This variable enables you to add an event Enum type to the Windows Event Log as
an Informational entry.

320 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 Vars.EventLogInfoAudits.Add(AuditType.AuthenticateFailed);
}

EventLogErrorAudits
This variable enables you to add an event Enum type to the Windows Event Log as
an Error entry.
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 Vars.EventLogErrorAudits.Add(AuditType.UserDisabled);
}

Default Settings Custom Variables
The system defaults are already defined in Process Director, but you can add to or
override the default settings by editing the vars.cs.aspx file in the “\Program
Files\BP Logix\Process Director\website\custom\” directory created during the
installation.

BusinessHolidays
This variable enables you to control which dates are considered Holidays. The
standard US holidays are included in the default set of business holidays.
New Year’s Day: January 1
Birthday of Martin Luther King Jr: January 20
President’s Day: February 17
Memorial Day: Last Monday in May
Independence Day: July 4
Labor Day: First Monday in September
Columbus Day: October 12
Veterans' Day: November 11
Thanksgiving: Last Thursday in November

Developer's Reference Guide | 321

BP Logix Inc
Process Director Documentation

Christmas: Friday, December 25
Please note that many holidays fall on a weekend, necessitating Friday or Monday
holiday dates that are different from the official dates. Dates are, of course, hard-
coded as the actual holiday dates in the system. For Cloud customers, BP Logix
updates the default holidays routinely. For on-premise customers, however, the
holidays dates need to be completely replaced on at least a yearly basis, to ensure
the correct dates are marked as holidays in the system. Updating the product will
automatically update the current default holidays, and this is the preferred solu-
tion for keeping the default holidays up to date. Non-US customers will need to
completely replace the default US holiday calendar with a local calendar in the cus-
tomization file.
You can simply add holidays to the default calendar by using the Busi-
nessHolidays.Add() method. Similarly, you can use the BusinessHolidays.Remove()
method to remove a specific holiday from the default list of holidays.
You can also completely replace the default holiday calendar with a calendar of
your own configuration by creating a new BusinessHolidays HashSet, then using
the BusinessHolidays.Add method to add the new holidays you wish to include in
your calendar. You'll need to use the System.Collections.Generic namespace to cre-
ate the new HashSet by declaring it, or using it inline.
Example
Datetime declarations are set in the format: year, month, day, so declaring May 12,
2021 as a holiday date would be done via the syntax:
bp.Vars.BusinessHolidays.Add(new DateTime(2021, 5, 12).Date);

322 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Sample Code Block

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
//===========Add Holidays to the Default Cal-
endar==============
 // Christmas Eve, 2020

bp.Vars.BusinessHolidays.Add(new DateTime(2020, 12,
24).Date);

//Boxing Day (Canada, UK), 2020
bp.Vars.BusinessHolidays.Add(new DateTime(2020, 12,

26).Date);
//==-
=

//===========Create a New Holiday Cal-
endar=====================

// Add a completely new Holiday calendar and overwrite the
default
 // US holidays. You must declare the namespace (i.e.
 // Using System.Collections.Generic)or use the namespace
inline
 // to create a new HashSet

//Create the new HashSet to overwrite the default holidays
bp.Vars.BusinessHolidays = new HashSet<DateTime>();
//Add the new holidays
//New Year's Day
bp.Vars.BusinessHolidays.Add(new DateTime(2020, 1,

1).Date);
//Canada Day
bp.Vars.BusinessHolidays.Add(new DateTime(2020, 7,

1).Date);
//Independence Day (US)
bp.Vars.BusinessHolidays.Add(new DateTime(2020, 7,

4).Date);
//==-
=
}

BusinessHourStart
This variable enables you to control when business hours start, and is used in cal-
culations of process due dates. The default value is "8" (8:00 AM).

Developer's Reference Guide | 323

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // This organization's business day starts at 7am

bp.Vars.BusinessHourStart = 7;
}

BusinessHourStop
This variable enables you to control when business hours end, and is used in cal-
culations of process due dates. The default Value is "17" (5:00 PM).
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// This organization's business day ends at 5pm
bp.Vars.BusinessHourStop = 17;

}

CheckReminderBusinessHours
This variable enables you to control if process reminders should be sent ONLY dur-
ing business hours. The default value for this variable is "true".
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Only send reminders during business hours

bp.Vars.CheckReminderBusinessHours = true;
}

DefaultHTMLEncode
This variable enables you to set HTML as the default encode type for Form system
variables.

324 | Developer's Reference Guide

Parameters.htm#EncodeTypes

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

//Set HTML as the default encode type for Form System vari-
ables.

bp.Vars.DefaultHTMLEncode = true;
}

DefaultInviteEmail
This variable enables you to set your own .ascx file as the default invite email
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Custom ASCX file to use as invite email
bp.Vars.DefaultInviteEmail = "~/cus-

tom/YourCustomInviteEmail.ascx";
}

DefaultPasswordEmail
This variable enables you to set your own .ascx file as the default password
reminder email. When constructing this email message, you'll want to create a link
to the correct password change page for the user. Creating this link will require the
use of a system variable formatter, PWD_GUID, which is a special formatter for use
with password changes. This formatter returns the Password Change GUID for the
user. This value is returned from the guidPwdChange field from the tblUser table
in the Process Director database. This field value is saved to the database when the
user requests a password reset and it is reset as soon as they log in.
To construct the URL for the password change page in your custom email, you can
have the URL dynamically constructed using the following syntax:
{INTERFACE_ URL}user_ password_ reset.aspx?pwdguid= {EMAIL_ USER,-
format=PWD_GUID}

The Interface URL system variable will return the interface URL setting from your
system to return the base URL for the Process Director server, followed by a slash.
The Email User system variable, using the PWD_GUID formatter, will return the

Developer's Reference Guide | 325

BP Logix Inc
Process Director Documentation

Password Change GUID that was set for the user when they asked for a password
reset.
With this syntax, the requesting user will receive an email with the correct link to
the password reset page for their specific password reset request.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Custom ASCX file to use as password reminder email
bp.Vars.DefaultPasswordEmail = "~/cus-

tom/YourCustomPasswordEmail.ascx";
}

DefaultTimelineEmail
This variable enables you to set your own .ascx file as the default Timeline email.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Custom ASCX file to use as Timeline email
bp.Vars.DefaultTimelineEmail = "~/cus-

tom/YourCustomDefaultEmail.ascx";
}

DefaultWorkflowEmail
This variable enables you to set your own .ascx file as the default process email
template.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
// Custom ASCX file to use as process email template

bp.Vars.DefaultWorkflowEmail="~/cus-
tom/YourCustomDefaultEmail.ascx";
}

DisabledTabsDisabled

326 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

This Custom Variable was deprecated in Process Director v5.45.100,
and should no longer be used. Instead, appropriate conditions should be
assigned to tabs via the UI. It remains in the product for legacy cus-
tomers only.

This variable, when set to "true", enables users to disable individual tabs in form
definitions that use the TabStrip/TabContent controls. The default for this option is
"False".
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Enable Tab Control disabling

bp.Vars.DisabledTabsDisabled = true;
}

ForceMobileAdvanced
This variable, when set to "true", will make every connection to Process Director a
mobile device connection. Even Desktop connections will be presented as mobile
connections. This can he helpful for preventing some mobile devices from trying to
use the Desktop UI for Process Director.
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Force mobile connection

bp.Vars.ForceMobileAdvanced = true;
}

ForceHttpOnlyCookies
This variable, when set to "true", will force the the “HttpOnly” attribute be used on
session cookies in the browser. The default value for this variable is "false".

Enabling this setting will prevent the use of the BP Logix plugin for
editing Word-based forms.

Developer's Reference Guide | 327

BP Logix Inc
Process Director Documentation

Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Force HttpOnly attribute for session cookies

bp.Vars.ForceHttpOnlyCookies = true;
}

ForceSecureCookies
This variable, when set to "true", will force the “Secure” attribute be used on ses-
sion cookies in the browser. The default value for this variable is "false".

This setting is only valid for https sessions.

Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Force secure cookies for HTTPS

bp.Vars.ForceSecureCookies = true;
}

RefreshParentWorkspaces
This variable, when set to the default value of "true", enables the home workspace
to be refreshed after completing tasks from an email. To disable this feature, set
the value to "false".
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Turn off workspace refresh

bp.Vars.RefreshParentWorkspaces = false;
}

RemoveSIDFromJS
By default, this variable is set to "true" which prevents the Windows Session ID
from being transmitted via JavaScript. Some older versions of Internet Explorer,

328 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

however, require Session IDs to be passed on the URL for popup windows that are
opened via JavaScript. So, if you encounter this scenario, set this variable to "false".
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Pass the SID via JavaScript to popup windows

bp.Vars.RemoveSIDFromJS = false;
}

LDAP Custom Variables
You can alter the way Process Director interoperates with LDAP, defines LDAP
users, authenticates with LDAP, and other functions by using the custom variables
in this section.

Properties
fAuthFastLDAP
This a boolean value that determines whether "fast" LDAP authentication will be
used. The default is False.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.fAuthFastLDAP = true;
}

fAuthLDAP
This a boolean value that determines whether LDAP authentication is enabled. The
default is False.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.fAuthLDAP = false;
}

fAuthLDAPEx

Developer's Reference Guide | 329

BP Logix Inc
Process Director Documentation

This a boolean value that determines whether LDAP authentication using the exten-
ded LDAP API is enabled. The default is False.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.fAuthLDAPEx = false;
}

fAuthLDAPAutoAdd
This a boolean value that determines whether LDAP users will automatically be
added as Process Director users after authentication. The default is False.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.fAuthLDAPAutoAdd = false;
}

LDAP_DisplayName_Field
This a string value that contains the name of the LDAP field containing the GUID
property of the user record. In Active Directory, this would be "displayName".
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.LDAP_DisplayName_Field = "Display Name";
}

LDAP_Email_Field
This a string value that contains the name of the LDAP field containing the user's
email address. In Active Directory, this would be "mail".

330 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.LDAP_Email_Field = "mail";
}

LDAP_GUID_Field
This a string value that contains the name of the LDAP field containing the GUID
property of the user record. In Active Directory, this would be "objectGUID".
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.LDAP_GUID_Field = "ObjectGUID";
}

LDAPEx_ReferralChasing
When set to the default value of ReferralChasingOption.All, this variable tells the
LDAP server to forward the authentication to all other servers. This is used when
the LDAP server containing the user records is for a different domain than the
domain against which you wish to authenticate.
The possible options for referral chasing are:

l All: Chase referrals of either the subordinate or external type.
l External: Chase external referrals.
l None: Never chase the referred-to server. Setting this option prevents a client
from contacting other servers in a referral process.

l Subordinate: Chase only subordinate referrals which are a subordinate nam-
ing context in a directory tree. The ADSI LDAP provider always turns off this flag
for paged searches.

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.LDAPEx_ReferralChasing =

Developer's Reference Guide | 331

BP Logix Inc
Process Director Documentation

ReferralChasingOption.All;
}

LDAP_PageSize
This a integer value that enables you to set a custom page size for the LDAP
records to be returned. The default value is 0. Be advised that setting this value
may cause some LDAP servers to crash. The maximum page size recommended for
Active Directory is 1000.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.LDAP_PageSize = 0;
}

LDAP_URL
This a string value that contains the URL of the LDAP server.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.LDAP_URL = "ldap://LdapServerName.com";
}

LDAP_UserID_Field
This a string value that contains the name of the LDAP field containing the User ID.
In Active Directory, this would be "sAMAccountName".
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.LDAP_UserID_Field = "sAMAccountName";
}

332 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

List Maximum Custom Variables
These system variables enable you to specify the maximum number of records
that are returned by various system lists, such as the maximum number of Know-
ledge View roes, User/Group Picker rows, etc.

nKViewBuiltinMaxResults
This variable enables you to set the maximum entries that any KView can return.
The default value for this variable is "1000".
Example

public override void SetSystemVars (BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Set maximum number of KView returns to 900 records
bp.Vars.nKViewBuiltinMaxResults = 900;

}

nMaxAdminPermRows
This variable enables you to set the maximum number of administrative per-
missions rows to display. The default is 1000.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// This will set the maximum number of admin permissions
rows.

bp.Vars.nMaxAdminPermRows = 1000;
}

nMaxAdminRows
This variable enables you to set the maximum number of rows in the Admin sec-
tion for any list. The default is 100.

Developer's Reference Guide | 333

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars (BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // This will set the maximum number of rows to 400 in any
list of
 // the admin section.

bp.Vars.nMaxAdminRows = 100;
}

nMaxAdminRowsGroupFilter
On the User Admin page, there is a search box that will enable you to search for a
specific user by typing in a text string. By default, Process Director will include
Group names in that search. However, for a large number of users, searching the
Group names as part of this search adds unacceptable overhead to the search func-
tion. If the number of users in the system exceeds this value, the search function
on the User Admin page will stop using Group names as part of the search. The
default value is 10000.
Example

public override void SetSystemVars (BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // This will set the maximum number of rows before stop-
ping
 // the use of Group names as a search criteria in User
Admin.

bp.Vars.nMaxAdminRows = 10000;
}

nMaxBusinessValueRows
This variable sets the maximum number of rows that will be returned by a Busi-
ness Value. The default is 200.
Example

public override void SetSystemVars (BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 //Default is 200

bp.Vars.nMaxBusinessValueRows = 100;
}

334 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

nMaxGroupDropdownRows
This variable enables you to set the maximum number of dropdown rows that
appear in a Group Picker control that is displayed as a dropdown control.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// This will set the maximum number of user dropdown rows.
bp.Vars.nMaxGroupDropdownRows = 15;

}

nMaxProfileButtons
This variable enables you to set the maximum number of buttons an administrator
can configure in a profile. These buttons are show at the top of each user’s home
page, and the default is 12.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // This will set the maximum number of buttons an admin
can
 // configure.

bp.Vars.nMaxProfileButtons = 12;
}

MaxUploadSize
This string variable enables you to set the maximum size, in bytes, for file uploads
and attachments.
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Set max upload size to 1MB.
 CV.MaxUploadSize = 1000000;
}

nMaxUserDropdownRows

Developer's Reference Guide | 335

BP Logix Inc
Process Director Documentation

This variable enables you to set the maximum number of dropdown rows that
appear in a User Picker control that is displayed as a dropdown control.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// This will set the maximum number of user dropdown rows.
bp.Vars.nMaxUserDropdownRows = 15;

}

nMaxUserPermsRows
This variable enables you to set the maximum number of user permissions rows to
display. The default is 1000.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // This will set the maximum number of user permissions
rows.

bp.Vars.nMaxUserPermsRows = 1000;
}

Logs Custom Variables
These Custom Variables enable you to specify settings to control how Process Dir-
ector's logging features operate.

fEnableDatabaseLogs
Process Director v4.55 and higher logs XML import events, goal evaluations, and
Active Directory syncs by default, which means that the default value for this vari-
able is "true". This logging can be turned off by setting this variable to false.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Turn off database logging for imports, AD Syncs, etc.
bp.Vars.fEnableDatabaseLogs = false;

}

336 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

fKeepADSyncInfoLogs
This variable, when set to "false", will prevent the Active Directory Sync Log History
from from logging most events at the "info" level (i.e., it will only log warnings and
errors). This should substantially reduce the number of logs in the tblLogs table in
the database, but you may still want to clear out the old logs prior to setting this
variable. You can do so by adjusting the nImportLogSyncDays variable to 0, then
running the global timer routines in the Troubleshooting window. Once complete,
you can reset nImportLogSyncDays to the desired value. This Variable can be used
in conjunction with the nMaxADSyncLogEvents variable to control the length of
AD synchronization audit logs. The default value for this variable is "true".

Prior to Process Director v5.3, clearing out the old logs requires reset-
ting the nImportLogDays Custom Variable. The nImportLogDays was
deprecated in v5.3 and replaced with nImportLogSyncDays.

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Prevent detailed AD Sync logging
 Vars.fKeepADSyncInfoLogs = false;
}

nArchiveLogDays
This variable enables you to control the number of days that Process Director
should retain its logs. Logs will be archived in the /App_Data/log_archive/ folder.
This custom variable is available only with users who have the Compliance edition
for on-site installations, or a cloud installation.
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.nArchiveLogDays = 7; // archives logs for a week
}

nImportLogDays

Developer's Reference Guide | 337

Creating an AD Sync Profile.htm#SyncLogHistory

BP Logix Inc
Process Director Documentation

This Custom Variable has been deprecated in Process Director v5.3.

Process Director v4.55 and higher logs XML import events, goal evaluations, and
Active Directory syncs by default, and stores the logs for 30 days. This variable
enables you to change the duration from 30 days, to a number of days of your
choice.
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Keep logs for 45 days
bp.Vars.nImportLogDays = 45;

}

nImportLogGoalDays
Process Director v5.3 and higher logs goal evaluations by default, and stores the
logs for 30 days. This variable enables you to change the duration from 30 days, to
a number of days of your choice.
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Keep Goal logs for 2 days
bp.Vars.nImportLogGoalDays = 2;

}

nImportLogImportDays
Process Director v5.3 and higher logs XML imports by default, and stores the logs
for 30 days. This variable enables you to change the duration from 30 days, to a
number of days of your choice.

338 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Keep XML import logs for 15 days
bp.Vars.nImportLogImportDays = 15;

}

nImportLogKVRunDays
Process Director v5.3 and higher logs Knowledge View executions by default, and
stores the logs for 30 days. This variable enables you to change the duration from
30 days, to a number of days of your choice.
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Keep KV run logs for 5 days
bp.Vars.nImportLogKVRunDays = 5;

}

nImportLogMLPublishDays
Process Director v5.3 and higher logs Machine Learning object publications by
default, and stores the logs for 30 days. This variable enables you to change the
duration from 30 days, to a number of days of your choice.
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Keep ML Pub logs for 5 days
bp.Vars.nImportLogMLPublishDays = 5;

}

nImportLogSArunDays
Process Director v5.3 and higher logs Stream Action runs by default, and stores the
logs for 30 days. This variable enables you to change the duration from 30 days, to
a number of days of your choice.

Developer's Reference Guide | 339

BP Logix Inc
Process Director Documentation

Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Keep SA run logs for 5 days
bp.Vars.nImportLogSArunDays = 5;

}

nImportLogSyncDays
Process Director v5.3 and higher logs Active Directory synchronizations by default,
and stores the logs for 30 days. This variable enables you to change the duration
from 30 days, to a number of days of your choice.
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Keep AD Sync logs for 5 days
bp.Vars.nImportLogSyncDays = 5;

}

nMaxADSyncLogEvents
This variable sets the maximum number of synchronization log events that will be
displayed on the Active Directory Sync Log History page.
Example

public override void SetSystemVars (BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 //Default is 200

bp.Vars.nMaxADSyncLogEvents = 100;
}

nMaxLogBackups
This variable enables you to set the maximum number of log files. After a log file
reaches the size configured by nMaxLogFileSize, it will “wrap” in a circular log file
queue.

340 | Developer's Reference Guide

Creating an AD Sync Profile.htm#SyncLogHistory

BP Logix Inc
Process Director Documentation

Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Keep a maximum of 20 wrapping log files
bp.Vars.nMaxLogBackups = 20;

}

nMaxLogFileSize
This variable enables you to set the maximum size of the wrapping log files. Spe-
cify this value in kilobytes.
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// This will set the maximum log file size to 3 meg.
bp.Vars.nMaxLogFileSize = 3000;

}

Miscellaneous Variables
There are a variety of miscellaneous custom variables that you can set to determ-
ine how some Process Director features or functions work.

fAllowV6Import
This variable enables you to control whether the iMarkup Server V6 import option
appears in the Content List.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.fAllowV6Import = true;
}

fCONTAINSUseValueSearchOnly
When using full- text search operators, such as (Contains (Lexical) search oper-
ations may take a long time, especially when searching many records containing
long text fields. This custom variable can speed up the operation of full text

Developer's Reference Guide | 341

BP Logix Inc
Process Director Documentation

searches by limiting the search to the first 256 characters of the field being
searched. While this may substantially speed up the search operation, it also
reduces the accuracy of the search results, as search terms that aren't included in
the first 256 characters of the field will be ignored.
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Speed up full-text searching

bp.Vars.fCONTAINSUseValueSearchOnly = true;
}

fEnableMultFormFieldsInCols
This Boolean variable enables Knowledge View designers to mix the use of the
form field chooser from the Choose System Variable dialog box and FORM sys-
tem variables in Knowledge View columns in Knowledge Views that return results
from multiple Form Definitions. The default value for this variable is "True". Setting
this variable to "False" will require that all fields be chosen from the Field Chooser.

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Allows mixing methods for choosing form fields in KView
Columns.

bp.Vars.fEnableMultFormFieldsInCols = true;
}

fEnableTransOnKVIEW
When true, this option enables running a SQL transaction prior to running the com-
mand to run a Knowledge View. Once the Knowledge View has been run, the trans-
action is rolled back. Running the transaction will aide in database concurrency for
complex filtering on the Knowledge View, using the Isol-
ationLevel.ReadUncommitted functionality on SQL Server only. This isn't enabled
for Oracle because Oracle only supports ReadCommitted and Serializable, which
would commit the transaction to the database. The default value for this variable is
"true". Setting the value to "false" will prevent the SQL transaction from running.

342 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Disables running the automatic SQL Transaction

bp.Vars.fEnableTransOnKVIEW = false;
}

fEnableTransOnSELECT
Knowledge Views use a transaction that will aide in database concurrency for com-
plex filtering on the Knowledge View. This is done by having a transaction around
the KVIEW SELECT. The default is to enable this functionality, but it can be turned
off by setting this in the custom vars:
This function is only applicable on SQL Server (not Oracle).
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Disables running the automatic SQL Transaction

bp.Vars.fEnableTransOnSELECT = false;
}

fFormDataTrans
When true, this system variable enables database transactions for certain form
field updates.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Enables transactions for some form field updates

bp.Vars.fFormDataTrans = true;
}

fFormSaveUpdatesOnly
When true, this system variable ensures that, when saving (submitting) Forms,
only modified fields will be updated in the database. This option's default setting is
"true". This setting enhances system performance.

Developer's Reference Guide | 343

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.fFormSaveUpdatesOnly = true; // Saves only updated
form data
}

fFormSkipDisableFieldsSave
When set to "true", this system variable ensures that disabled form fields can't be
edited via client JavaScript, and only set via server directives, when additional secur-
ity is desired. For Cloud installations of Process Director, the default value for this
variable has been set to "true". For all other versions, the default value of this vari-
able is "false".
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Disables JavaScript changes to disabled fields
bp.Vars.fFormSkipDisableFieldsSave = true;

}

fFormSkipHiddenFieldsSave
When set to "true", this variable ensures that hidden form fields can't be edited via
client JavaScript, and only set via server directives, when additional security is
desired. For Cloud installations of Process Director, the default value for this vari-
able has been set to "true". For all other versions, the default value of this variable
is "false".
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Disables JavaScript changes to hidden fields
bp.Vars.fFormSkipHiddenFieldsSave = true;

}

fHideLabelsFromConditions

344 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

For Process Director v5.33 and higher, setting this variable to "true" hides certain
controls (Comment Log, Buttons, Button Area, Embedded Sections, Routing Slip,
Labels) from the condition builder. These fields are generally not used to store
data, so may not be needed in the Condition Builder. The default value for this vari-
able is "false".
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Hides non-data fields from the Condition Builder
bp.Vars.fHideLabelsFromConditions = true;

}

fListenToEmailSetting
This variable when set to true, will force the activity/step to use the "participants
when activity starts" checkbox to determine if an email should be sent. Previously
an email was unconditionally sent when a user was added/reassigned in a running
step/activity by an administrator. The default value for this variable is false.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

//Use the task's email setting for administrative task
change notifications

bp.Vars.fListenToEmailSetting = true;
}

fPDFCreateOtherAsAttachments
This variable enables you to control whether the CreatePDFFromDocument API will
create a container PDF file for documents that can't be converted directly to a PDF
file.

Developer's Reference Guide | 345

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Create container PDF file for non-convertible documents
bp.Vars.fPDFCreateOtherAsAttachments = true;

}

FormFieldsAllowDisabledURLUpdate
This method is configured in the PreSetSystemVars method of the Custom.Vars
file. It enables you to specify the field names for fields whose values you wish to set
using a URL parameter. Any field name specified by this method can have the
value modified by a URL parameter on any Form that uses a field with the specified
name.
For instructions on implementing this method, see the Form Definition URL topic in
the Implementer's Reference.
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Fields to set via URL Parameter
bp.Vars.FormFieldsAllowDisabledURLUpdate.Add

("FieldName1");
bp.Vars.FormFieldsAllowDisabledURLUpdate.Add

("FieldName2");
}

fReAuthFillUserID
When set to true, a Process Director user will have to reenter his User ID when
prompted for re-authentication. This variable is set to false by default, which
means that the User ID is filled in automatically on a Form’s Re-Authenticate con-
trol.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Force reauthentication

346 | Developer's Reference Guide

Form Definition URL.htm

BP Logix Inc
Process Director Documentation

bp.Vars.fReAuthFillUserID = true;
}

fSkipNextPageCheck
When a user tries to view a page in Process Director while not logged in, he will be
redirected to a login page. After he logs in, he will be directed back to the original
page he was attempting to view. This variable is set to false by default. If it is set to
false, then the user won't be redirected after logging in if the URL interface para-
meter is invalid. This flag may need to be set to true if the users are navigating
through a firewall that changes the URL.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Redirect users after login
bp.Vars.fSkipNextPageCheck = true;

}

fSkipWhereUsedCheck
This variable prevents all usage checking upon the deletion of an object on the Con-
tent List. When set to true, Process Director won't check for the locations in which
an object is used. This variable need only be set to true if Process Director takes
too long to present a user with a dialogue showing him where the object is used
upon deletion.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Do not check for object locations
bp.Vars.fSkipWhereUsedCheck = true;

}

fUseAsyncUpload
By default, file uploads for Form attachments occur synchronously with Form sub-
missions, meaning that the Form submission can't complete until all files are
uploaded. Setting this value to "true" enables the form to be submitted while a

Developer's Reference Guide | 347

BP Logix Inc
Process Director Documentation

separate process performs the file uploads . This can prevent Form submissions
from hanging as they wait for large file uploads, or low bandwidth.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Enables files uploads to be processed separately

// from Form submissions
bp.Vars.fUseAsyncUpload = true;

}

fWebServiceAllowCredentialsURL
This variable enables callers of web services using REST to pass authentication cre-
dentials on the URL. The default value of this variable is "true". If this variable is set
to "false", the fWebServiceAuth custom variable will also have to be set to false, as
there will be no way to pass credentials for authorization.
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Disable Authentication credentials
 // Requires also setting the fWebServiceAuth var to false

bp.Vars.fWebServiceAllowCredentialsURL = true;
}

nDBCommandTimeout
This variable enables you to set the default database timeout value (normally 30
seconds).
For Process Director v6.1.200 and higher, the value set here will also govern the
database timeout values for Report objects that use SQL commands to return data.
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Set the DB timeout to 60 seconds

bp.Vars.nDBCommandTimeout = 60;
}

348 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

nDBTransIsolationLevel
This variable enables you to override the default database transaction isolation
level if set to any value other than "0" or "-1". The default is "0".
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Override the default database transaction isolation
level

bp.Vars.nDBTransIsolationLevel = 1;
}

nDebugProcessTimeFactor
This system variable enables you to multiply the configured lengths of Timeline
activities by a given factor. This can be used for test purposes, to shorten the dur-
ation of timeline activities relative to their configured due dates. Set this system
variable to the factor by which you wish to multiply the configured activity dur-
ations.
This only works for due dates configured as relative times (e.g. 5 business days). It
has no effect on setting due dates to a form field or a system variable. Use of this
feature will also trigger the internal timer processing and activity checks on all
pages which may hinder performance when enabled.
Example

public override void PreSetSystemVars (BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Activities will take 10% as long as they are
 // configured to take

bp.Vars.nDebugProcessTimeFactor = 0.1;
}

nLimitSearchToChars
This variable limits the number of characters to be searched in a form field. This
optional setting only applies when searching for form data using "contains" form
data in the filter. The default is no limit. This variable can provide a performance
improvement when searching for form data on systems with millions of rows.

Developer's Reference Guide | 349

BP Logix Inc
Process Director Documentation

Example

public override void PreSetSystemVars (BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Limit the search to only the first 256 characters in
the form data fields.
 Vars.nLimitSearchToChars = 256;
}

nWSTimeout
This system variable specifies the time, in milliseconds, that a web service call
should wait before timing out.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // The default timeout time is 10 minutes

bp.Vars.nWSTimeout = 1000 * 60 * 10;
}

sMobileAdvancedTypes
This variable will enable process director to detect additional browser strings for
mobile devices.
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // This will add additional browser agent strings for
mobile devices

bp.Vars.sMobileAdvancedTypes = "Android 10, iOS 13, [Some
Other Browser Type]";
}

sUploadAddCookie
This variable enables you to identify an HTTP cookie that should be added to the
document and Form upload web service call. Some session managers require a
cookie for all page access. If this variable is specified, the named cookie will be
copied to the upload requests using obj_upload.aspx.

350 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // SiteMinder requires the SMSESSION cookie

bp.Vars.sUploadAddCookie = "SMSESSION";
}

ValidationPhonePattern
This variable contains a regular expression used to validate form fields containing
phone numbers. See the example for the default value of this variable:
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Regular expression to use for validating phone numbers
bp.Vars.ValidationPhonePattern =

 @"^(?:(?:[\+]?(?<CountryCode>[\d]{1,3}(?:[]+|[\-
 .])))?[(]?(?<AreaCode>[\d]{3})[\-/)]?(?:[]+)?)?

(?<Number>[a-zA-Z2-9][a-zA-Z0-9 \-.]{6,})(?:(?:[
]+|[xX]|(i:ext[\.]?)){1,2}(?<Ext>[\d]{1,5}))?$";
}

ValidationUrlPattern
This variable contains a regular expression used to validate URL strings. See the
example for the default value of this variable:
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Regular expression to use for validating URLs
bp.Vars.ValidationUrlPattern = @"^(http|https|ftp)\://
[a-zA-Z0-9\-\.]+\.[a-zA-Z]{2,3}(:[a-zA-Z0-9]*)

 ?/?([a-zA-Z0-9\-\._\?\,\'/\\\+&%\$#\=~])*$";
}

ValidationZipCodePattern
This variable contains a regular expression used to validate form fields containing
ZIP codes. See the example for the default value of this variable:

Developer's Reference Guide | 351

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Regular expression to use for validating zip codes
bp.Vars.ValidationZipCodePattern = @"^(\d{5}-\d{4}|\d{5}\d

{9})$";
}

ML and AI Custom Variables
Process Director v5.0 and higher supports custom variables for Machine Learning
(ML) and Artificial Intelligence (AI) services. Some of the services are provided by
third parties, and require external accounts to access those services, while others
are integral to Process Director.

Google Sentiment
The Google sentiment service can analyze text submissions for the sentiment the
text expresses. Passing a text string to the Google Sentiment service submits it for
analysis, and the Service returns a double-precision number that ranges from -1.00
to 1.00. A value of 0 is a neutral sentiment. A negative value indicates negative sen-
timent, while a positive value indicates a positive sentiment. The closer to -1.00 or
1.00 the return value is, the more intense the sentiment expressed. For instance, a
return value of 0.85 is a very positive sentiment.
Required Variables
To configure Process Director for the Google Sentiment service, the custom vari-
ables below must be configured:
GoogleSentiment_private_key
This string variable contains the your private key for the Google Sentiment service.
This value is provided to you by Google.
GoogleSentiment_client_email
This string variable contains the email address you used as the client email address
for the Google Sentiment service.
Optional Variables
GoogleSentiment_project_id

352 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

This string variable contains the Project ID for the Google Sentiment service. This
value is provided to you by Google.
GoogleSentiment_private_key_id
This string variable contains the Private Key ID for the Google Sentiment service.
This value is provided to you by Google.
GoogleSentiment_client_id
This string variable contains the Client ID for the Google Sentiment service. This
value is provided to you by Google.
GoogleSentiment_client_x509_cert_url
This string variable contains the URL you used as the x509 Client Certificate for the
Google Sentiment service.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

//The following vars are required:
bp.Vars.GoogleSentiment_private_key = @"YourPrivateKey";
bp.Vars.GoogleSentiment_client_email =

"email@address.com";

//The following vars are optional:
bp.Vars.GoogleSentiment_project_id = "YourProjectID";
bp.Vars.GoogleSentiment_private_key_id =

"YourPrivateKeyID";
bp.Vars.GoogleSentiment_client_id = "YourClientID";
bp.Vars.GoogleSentiment_client_x509_cert_url =

 "https://YourClientCertURL.com";
}

Mobile Application Custom Variables
Process Director v5.45 and higher enables a separately-licensed Mobile Application
Component. This component requires custom variables to be configured to imple-
ment the component.
The custom variables will be configured by BP Logix for Cloud customers.

nAppenateCompanyID
This numeric variable specifies the Company ID for the mobile application of this
Process Director installation.

Developer's Reference Guide | 353

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Mobile Server ID
bp.Vars.nAppenateCompanyID = 1;

}

fEnableFormFieldDownload
This boolean variable, when set to true, enables the display of the Download Field
List action link on the Properties tab of Form definitions.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Enable Download Field List
bp.Vars.fEnableFormFieldDownload = true;

}

sAppenateIntegrationKey
This string variable specifies the Mobile Server integration Key for the Process Dir-
ector installation.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

//Mobile Server Integration Key
bp.Vars.sAppenateIntegrationKey = "XXXXXXXX-XXXXXXXXX";

}

sMobileWebServerURL
This string variable specifies the URL of the mobile server to use for this Process
Director installation.

354 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

//Mobile Server URL
bp.Vars.sMobileWebServerURL =

"https://mobile.bplogix.com";
}

Password Enforcement Custom Variables
Password enforcement settings variables are only for users using the Compliance
or Cloud versions, and are set in the custom vars file to enforce password
strength/security.

ForcePwdChangeEvery
This is an integer value that the number of days to elapse before requiring users to
change their passwords.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Number of days before password change is required

bp.Vars.ForcePwdChangeEvery = 30;
}

ForgotPasswordRedirectURL
This variable enables you to set the redirect URL to which the user will be referred
when the "I forgot my password" link is selected.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Redirect for forgatten password

bp.Vars.ForgotPasswordRedirectURL = "https://-
some.url/somePage.htm";
}

fUnlockAcctOnPasswordReset

Developer's Reference Guide | 355

BP Logix Inc
Process Director Documentation

This variable, when set to true, will automatically unlock a locked user account
when they perform a password reset. The default value for this variable is false.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Unlock account on user password reset

bp.Vars.fUnlockAcctOnPasswordReset = true;
}

LoginFailuresUntilLock
This is an integer value that sets the number of allowed login failures until the
account is locked.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Number of allowed login attempts
bp.Vars.LoginFailuresUntilLock = 3;

}

NotifyPwdChangeDays
This variable enables you to set the number of days prior to password expiration to
notify the user that a built-in account password is set to expire.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Notify users 3 days before their password expires
bp.Vars.NotifyPwdChangeDays = 3;

}

PasswordResetRedirectURL
This variable enables you to set the redirect URL to which the user will be referred
after a password reset.

356 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Redirect users to this page after a password reset
bp.Vars.PasswordResetRedirectURL =

"https://www.SomeURL.Com/SomePage.htm";
}

PwdMinLength
This is an integer value that sets the minimum length of the Password.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Minimum number of password characters
bp.Vars.PwdMinLength = 10;

}

PwdMinLetters
This is an integer value that sets the minimum number of letter characters
required.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Minimum number of password letter characters required
bp.Vars.PwdMinLetters = 1;

}

PwdMinLower
This is an integer value that sets the minimum number of lower case characters
required.

Developer's Reference Guide | 357

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Minimum number of password lower-case letter characters
required

bp.Vars.PwdMinLower = 1;
}

PwdMinUpper
This is an integer value that sets the minimum number of upper case characters
required.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Minimum number of password upper-case letter characters
required

bp.Vars.PwdMinUpper = 10;
}

PwdMinNumbers
This is an integer value that sets the minimum number of numeric characters
required.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Minimum number of password numeric characters required
bp.Vars.PwdMinNumbers = 1;

}

PwdMinSymbols
This is an integer value that sets the minimum number of symbol or special char-
acters required. Any special character is allowed.

358 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Minimum number of password special characters required
bp.Vars.PwdMinSymbols= 1;

}

PwdNoReuseDays
This is an integer value that sets the minimum number of days that must elapse
before a password can be reused.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// can't reuse a password in this many days
bp.Vars.PwdNoReuseDays = 365;

}

PwdNoReuseNumTimes
This is an integer value that sets the minimum number of password changes that
must elapse before a password can be reused.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// can't reuse a password in this many changes
bp.Vars.PwdNoReuseNumTimes = 10;

}

PwdStrength
This variable enables you set a password strength for user passwords. The default
value is "PasswordStrength.Low" which doesn't implement any password enforce-
ment for user accounts. You can set the following custom password strengths:
PasswordStrength.Low: Requires that the password be at least 4 characters in
length.

Developer's Reference Guide | 359

BP Logix Inc
Process Director Documentation

PasswordStrength.Medium: Requires that the password be at least 8 characters
in length, and contain at least one letter and one number.
PasswordStrength.High: Requires that the password be at least 10 characters in
length, and contain at least one number, one upper case letter, one lower case let-
ter, and one symbol character.
PasswordStrength.Custom: Enables you to set a custom password strength
using the variables discussed in this topic.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Set the required password strength

bp.Vars.PwdStrength = PasswordStrength.High;
}

PwdStrengthMessage
This variable enables you set a string displayed to the users when they change
their password (for built-in users only). This string can be used, for example, to
inform users of password strength requirements.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // This will set a message to display to users changing
their
 // passwords

bp.Vars.PwdStrengthMessage = "Passwords must be a minimum
of 8
 characters and have at least one number”;
}

Setting Custom Password Enforcement Variables
To set a custom password strength in the custom variables file (vars.cs), you must
first set the Password Strength to custom, then add the specific password strength
variables that you desire. Below is some sample code for setting a custom pass-
word strength.

360 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // This will set a custom password strength

bp.Vars.PwdStrength = PasswordStrength.Custom;
bp.Vars.ForcePwdChangeEvery = 90;
bp.Vars.LoginFailuresUntilLock = 5;
bp.Vars.PwdMinLength = 8;
bp.Vars.PwdMinLower = 1;
bp.Vars.PwdMinUpper = 1;
bp.Vars.PwdMinNumbers = 1;
bp.Vars.PwdMinSymbols= 1;
bp.Vars.PwdStrengthMessage = "Password must be at least 8

characters,
and must have an upper case letter, a lower case letter,

a
 number, and a special character. EXAMPLE: m0squiTo!";
}

Process Administration Custom Variables
You have the option to alter who may use some Process Director functions by
restricting their use to Process Administrators. The custom variables in this section
define which actions can be restricted to process administrators.

fDisableAsyncWorkflow
This boolean variable, when set to true, will disable any asynchronous process
steps in a process definition. The default value is false. This setting is primarily for
use in development systems.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.fDisableAsyncWorkflow = true; // Disable async pro-
cesses
}

fInternalDSPadminOnly
This boolean variable sets whether only Process Administrators are allowed to con-
figure internal Datasources. The default value is true.

Developer's Reference Guide | 361

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.fInternalDSPadminOnly = true; // Only P-Admins can
config
}

fInternalUserDSPadminOnly
This boolean variable sets whether only Ptocess Administrators are allowed ro con-
figure internal user Datasources. The default value is true.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.fInternalUserDSPadminOnly = true; // Only P-Admins
can config
}

fNewSkipPendingLogic
For Process Director v5.36 and higher, the logic for evaluating the Activity Result
system variable was changed to skip activity instances that were marked as not
needed. This can cause an issue for customers that used the system variable that
on conditions to control looping when using the legacy Branch Activity Type,
instead of the Looping conditions on a Parent Activity Type. Setting this variable to
"false" disables the new logic. The default value for this variable is "true".
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Use the old Activity Result logic for Branch activities

bp.Vars.fNewSkipPendingLogic = false;
}

fReportViewsPadminOnly
This boolean variable sets whether only Process Administrators are allowed to con-
figure views in reports. The default value is true.

362 | Developer's Reference Guide

Timeline Activity System Variables.htm#ActivityResult
Timeline Activity System Variables.htm#ActivityResult

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.fReportViewsPadminOnly = true; // Only P-Admins
can config
}

fScriptsPadminOnly
This boolean variable sets whether only System Administrators are allowed to con-
figure scripts in Forms, Process Timelines, and Knowledge Views. The default value
is false.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.fScriptsPadminOnly = false; // Anyone can config
}

nAsyncSubProcessWaitSecs
This variable enables you to control the number of seconds that Process Director
should wait for an asynchronous subprocess to complete. On some systems, when
starting a subprocess using the "Run Asynchronously" and the "Wait for sub-
process to complete" options, the system can mark the calling task as complete
before the called subprocess completes. This may be especially true if the sub-
process contains complex rendering operations. This variable adds a 5-second wait
time as a default, to help ensure the subprocess has time to complete.
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Wait 5 seconds before marking the
 // calling task as complete

bp.Vars.nAsyncSubProcessWaitSecs = 5;
}

Developer's Reference Guide | 363

BP Logix Inc
Process Director Documentation

Reporting Tool Custom Variables
These variables are available in Cloud Installations, or on-premise installations with
the Advanced Reporting option. The custom variables in this section enable you to
change the default settings of the reporting tool included with the advanced
reporting option.

fReportShowExportTo…
The reporting tool has several Boolean variables that determine whether reports
can be exported to specific file formats. All of these variables have similar names,
and are all listed below, along with their default values.
Export Variables

VARIABLE NAME EXPORT FILE FORMAT DEFAULT
VALUE

fReportShowExportToBmp Bitmap Image False

fReportShowExportToCsv Comma- separated
Text

True

fReportShowExportToDbf dBase False

fReportShowExportToDif Data Interchange
Format

False

fReportShowExportToDocument Word 2010 and higher False

fReportShowExportToExcel Excel 2010 and higher False

fReportShowExportToExcel2007 Excel 2007 True

fReportShowExportToExcelXml Excel XML False

fReportShowExportToGif GIF Image False

fReportShowExportToHtml HTML True

fReportShowExportToJpeg JPEG Image False

fReportShowExportToMetafile Enhanced Metafile False

fReportShowExportToMht MHTML Archive True

fReportShowExportToOpenDocumentCalc Open Document
Format for LibreOffice
Calc

False

364 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

VARIABLE NAME EXPORT FILE FORMAT DEFAULT
VALUE

fReportShowExportToOpenDocumentWriter Open Document
Format for LibreOffice
Writer

False

fReportShowExportToPcx PCX Image False

fReportShowExportToPdf Adobe PDF True

fReportShowExportToPng PNG Image True

fReportShowExportToPpt PowerPoint True

fReportShowExportToRtf Rich text File True

fReportShowExportToSvg Scalable Vector Graph-
ics

False

fReportShowExportToSvgz Compressed Scalable
Vector graphics

False

fReportShowExportToSylk Symbolic Link
(Microsoft)

False

fReportShowExportToText Text True

fReportShowExportToTiff TIFF Image True

fReportShowExportToWord2007 Word 2007 True

fReportShowExportToXml XML True

fReportShowExportToXps Open XML False

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Do not show export to BMP option
bp.Vars.fReportShowExportToBmp = false;

}

BaseURLFromRenderingServer
This string variable contains the base URL for the production server for which ren-
dering operations will be performed, and should be configured only on a licensed

Developer's Reference Guide | 365

BP Logix Inc
Process Director Documentation

Rendering Server.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

//Base Server URL
bp.Vars.BaseURLFromRenderingServer = "http://-

productionserver.com";
}

ReportRemoteURL
This string variable contains the URL for a licensed Rendering Server, and should
be configured only on the production server.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

//Rendering Server URL
bp.Vars.ReportRemoteURL = "http://renderingserver.com";

}

sReportInterfaceURL
This string variable contains the URL for the report viewer interface, if you wish to
exercise the option to use a different URL for the report interface.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

//Report Server URL
bp.Vars.sReportInterfaceURL = "http://server-

name.com/reports.aspx";
}

REST Custom Variables
Custom variables in this section of the documentation can be used to customize a
variety of settings associated with using a Business Value to return data from a
REST data source.

366 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

DefaultBVRestAccept
A string variable that determines the default format for results from a REST web
service call by a Business Value. The default value is "XML".
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Set default REST returns as XML
bp.Vars.DefaultBVRestAccept = "XML";

}

DefaultBVRestMethod
A string variable that determines the default method for returning results from a
REST web service call by a Business Value. The default value is "POST".
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Set default REST return method
bp.Vars.DefaultBVRestMethod = "POST";

}

DefaultBVRestContentType
A string variable that determines the default REST Content Type for a web service
call by a Business Value. The default value is "application/XML".
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Set default REST content type
bp.Vars.DefaultBVRestContentType = "application/XML";

}

DefaultBVRestHeaders
This Custom Variable implements an Add method that enables you to specify cus-
tom REST HTTP headers for a web service call by a Business Value.

Developer's Reference Guide | 367

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Add REST header
bp.Vars.DefaultBVRestHeaders.Add(new NameValue("Name",

"Value"));
}

DefaultBVRestCredentials
This Custom Variable enables you to specify the default network credentials to sup-
ply to a REST web service call by a Business Value.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Default REST credentials
bp.Vars.DefaultBVRestCredentials =
new System.Net.NetworkCredential("UserID","password");

}

SAML Custom Variables
Custom variables in this section of the documentation can be used to customize a
variety of settings associated with Using SAML/Federated Identity when working
with SAML providers.

AddSAMLGroups
A Boolean variable that determines whether Process Director should add any
Groups from a SAML login that Process Director doesn't already have.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Automatically create new SAML groups
bp.Vars.AddSAMLGroups = true;

}

AddSAMLGroupsIgnore

368 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

This variable consists of a list of Group names to ignore in the auto-add logic
(AddSAMLGroups)on the SAML login. E.g. if the SAML login includes an "admin"
group, but you don’t want a SAML login to automatically add anyone to the pre-
existing "admin" group in Process Director.
Examples

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// SAML Groups to ignore in the SAML import
 List<string> IgnoreGroups = new List<string>();

IgnoreGroups.Add(@"admin");
IgnoreGroups.Add(@"Administrators");
bp.Vars.AddSAMLGroupsIgnore= IgnoreGroups;

}

OR

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// SAML Groups to ignore in the SAML import
bp.Vars.AddSAMLGroupsIgnore = new List<string> { "admin",

"Administrators" };
}

EXT_User_AutoCreate
A Boolean variable that determines whether Process Director should automatically
create user accounts for externally authenticated users. The default value is "true".
Setting the variable to "false" will prevent the automatic creation of user accounts.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Automatically create user accounts for externally
authenticated users

bp.Vars.EXT_User_AutoCreate = true;
}

EXT_User_AutoCreateDisabled

Developer's Reference Guide | 369

BP Logix Inc
Process Director Documentation

A Boolean variable that determines whether the user accounts that are auto-
matically created from external authentication should be initially set as disabled.
The default value is "false". Setting the variable to "true" will initially set auto-
matically created user accounts as disabled.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Initially set automatically created user accounts as
disabled

bp.Vars.EXT_User_AutoCreateDisabled = true;
}

fAuthSAMLAllowDuplicateUserIDs
This variable, when set to true, enables the use of duplicate User ID's when using
SAML authentication. This requires that the SAML assertion send a unique GUID or
identifier for the users. The default value for this variable is false.
Please note that the use of duplicate userIDs isn't recommended.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// If set to true, duplicate UserIDs will be allowed
 // when using SAML authentication

bp.Vars.fAuthSAMLAllowDuplicateUserIDs = true;
}

MatchSAMLGroups
This variable, when set to true, will, when group membership is specified in the
SAML assertion, match the group assignments of an imported user to existing
groups on the Process Director installation. When activated, the following import
actions will occur to accomplish the group matching:

1. Users will be removed from group membership in existing groups that don't
exist in the SAML assertion, with the exception of groups that do not have
AuthType set to SAML.

370 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

2. Users will be added to groups of which they aren't currently a member if the
group exists in the SAML assertion. Users will be added to the groups, even if
the group does not have AuthType set to SAML.

In other words, if a Process Director User Group exists that has the same name as
a SAML group contained in the assertion, but the existing group does not have
AuthType set to SAML, the user import will ensure the user is always added to, but
never removed from, the existing group.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Match SAML groups with PD group membership
bp.Vars.MatchSAMLGroups = true;

}

SAML_Artifact_URL
A string variable that sets the optional Identity Provider artifact URL.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// SAML Optional IDP URL
bp.Vars.SAML_Artifact_URL = "http://www.SAMLPro-

viderURL.com";
}

SAML_Attrib_CustomDate
A string variable that sets the name of the attribute containing a Custom Date.

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Custom date attribute
bp.Vars.SAML_Attrib_CustomDate = "AttributeName";

}

SAML_Attrib_CustomString
A string variable that sets the name of the attribute containing a Custom String.

Developer's Reference Guide | 371

BP Logix Inc
Process Director Documentation

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Custom string attribute
bp.Vars.SAML_Attrib_CustomString = "AttributeName";

}

SAML_Attrib_CustomString2
A string variable that sets the name of the attribute containing a second Custom
String.

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Custom string 2 attribute
bp.Vars.SAML_Attrib_CustomString2 = "AttributeName";

}

SAML_AuthType
This variable enables you to specify that the system will treat SAML users as if they
were the Windows user type.

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Treat SAML users as Windows users
bp.Vars.SAML_AuthType = User.eAuth.Windows;

}

SAML_Issuer
An optional string variable that sets the ID of the SAML issuer. This ID is sometimes
the same as the EntityId.

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// SAML Issuer ID attribute
bp.Vars.SAML_Issuer = "IssuerID";

}

SAML_Attrib_CustomNumber

372 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

A string variable that sets the name of the attribute containing a Custom Number.

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Custom number attribute
bp.Vars.SAML_Attrib_CustomNumber = "AttributeName";

}

SAML_Attrib_Email
A string variable that sets the name of the attribute containing the User's email
address.

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Email attribute
bp.Vars.SAML_Attrib_Email = "AttributeName";

}

SAML_Attrib_Groups
A string variable that sets the name of the attribute containing the User Groups.

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// User groups attribute
bp.Vars.SAML_Attrib_Groups = "AttributeName";

}

SAML_Attrib_GUID
A string variable that sets the name of the attribute containing the User GUID.

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// GUID attribute
bp.Vars.SAML_Attrib_GUID = "AttributeName";

}

SAML_Attrib_UserID
A string variable that sets the name of the attribute containing the UserID.

Developer's Reference Guide | 373

BP Logix Inc
Process Director Documentation

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// User ID attribute
bp.Vars.SAML_Attrib_UserID = "AttributeName";

}

SAML_Attrib_UserName
A string variable that sets the name of the attribute containing the UserName.

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Username attribute
bp.Vars.SAML_Attrib_UserName= "AttributeName";

}

SAML_Enable
A Boolean variable that determines whether to require that SAML login. Setting the
value to "true" will require the SAML login. The default value is "false".
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Require SAML login
bp.Vars.SAML_Enable = true;

}

SAML_Enable_ SLO
For Process Director v6.0.100 and higher, this Boolean variable determines
whether to enable Azure Single Sign-Out for SAML. Setting the value to "true" will
when logging out of Process Director, also completely log the user off the SAML
Identity Provider (Azure). The default value is "false".

374 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Enable SAML Single Sign-Out for Azure
bp.Vars.SAML_Enable_SLO = true;

}

SAML_IP_AssertionCertificate
A string variable that sets the optional path to the identity provider's public cer-
tificate used to validate the assertions in the SAML response.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Assertion certificate path
bp.Vars.SAML_IP_AssertionCertificate =

 "https://www.certificateURL.com/path/certificate.cer";
}

SAML_IP_Certificate
A string variable that sets the optional path to the identity provider's public cer-
tificate used to validate the entire SAML response.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// IDP certificate path
bp.Vars.SAML_IP_Certificate =

 "https://www.certificateURL.com/path/certificate.cer";
}

SAML_My_Certificate
A string variable that sets the optional path to your public certificate used for
SAML requests.

Developer's Reference Guide | 375

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Certificate path
bp.Vars.SAML_My_Certificate =

 "https://www.certificateURL.com/path/certificate.cer";
}

SAML_My_PFX
A string variable that sets the optional path to the PFX file used to sign SAML
requests.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// PFX file location
bp.Vars.SAML_My_PFX = "C:\File\Path";

}

SAML_My_PFXPassword
A string variable that sets the optional password of the PFX file used to sign SAML
requests.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// PFX file password
bp.Vars.SAML_My_PFXPassword = "password";

}

SAML_NextURLInRelayState
A Boolean variable that determines whether the "next URL" is set inside the relay
state variable. The default value is "false".

376 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Enable URL relay
bp.Vars.SAML_NextURLInRelayState = true;

}

SAML_NoLoginButton
A Boolean variable that determines whether the SAML login button will be
removed from the home page. The default value is "false". Setting the variable to
"true" will hide the login button.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Hide the SAML login button
bp.Vars.SAML_NoLoginButton = true;

}

SAML_ProviderName
An optional string variable that sets the ProviderName of the SAML issuer.

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// SAML provider name attribute
bp.Vars.SAML_ProviderName = "ProviderName";

}

SAML_URL
A string variable that sets the URL of the SAML identity provider.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// SAML IDP URL
bp.Vars.SAML_URL = "http://www.SAMLProviderURL.com";

}

Developer's Reference Guide | 377

BP Logix Inc
Process Director Documentation

SAML_URL_Destination
A string variable that sets the optional Destination URL of the SAML Identity Pro-
vider, i.e., the URL in SAML request Destination field.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// SAML Destination URL
bp.Vars.SAML_URL_Destination = "http://www.SAMLPro-

viderURL.com";
}

SAML_URL_Logout
A string variable that sets the optional URL of the SAML logout page to use when
redirecting a user who logs out of Process Director.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// SAML logout URL
bp.Vars.SAML_URL_Logout = "http://www.SAMLLogoutURL.com";

}

Social Media Custom Variables
Process Director enables you to connect to a variety of Social Media Datasources.
For the purposes of this documentation, we will include other services, such as
Microsoft Dynamics, even though they aren't classified as social media con-
nections, since the connections are implemented in the same fashion as social
media connections.

Social Media Connections
There are four sysvar types that you can use when creating social media con-
nections:

1. ConnectionString: String value. The Connection string used to connect to the
social media source. The connection string for each social media connector
already have default values in Process Director that automatically use the

378 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

appropriate OAuth app tokens and token secrets to connect to the data
source. They should not, therefore, require customization. You may, of
course, customize these connection strings if necessary. For Microsoft
OneDrive, Dropbox, and Box.Net, the Connection String properties aren't
needed, but these data sources still implement the remaining three sysvar
types below.

2. Accomplishment: Boolean value. Show the Client token to allow users to cus-
tomize it.

3. DefaultAppToken: String value. The default OAuth application token for the
social media source.

4. Default App Token Secret: String value. The default AOAuth token secret for
the social media source.

Each of the fours sysvar types above are implemented separately for each social
media source as follows:

SOCIAL MEDIA SOURCE SYSVAR NAME

LinkedIn LinkedInConnectionString

LinkedInShowClientToken

LinkedInDefaultAppToken

LinkedInDefaultAppTokenSecret

Google Sheets GoogleSheetsConnectionString

GoogleShowClientToken

GoogleDefaultAppToken

GoogleDefaultAppTokenSecret

Dropbox DropboxShowClientToken

DropboxDefaultAppToken

DropboxDefaultAppTokenSecret

Microsoft OneDrive OneDriveShowClientToken

OneDriveDefaultAppToken

OneDriveDefaultAppTokenSecret

Developer's Reference Guide | 379

BP Logix Inc
Process Director Documentation

SOCIAL MEDIA SOURCE SYSVAR NAME

Box.Net BoxNETShowClientToken

BoxNETDefaultAppToken

BoxNETDefaultAppTokenSecret

In addition, for users of Federated Identity, Facebook, Twitter and Google, there
are tokens and token secrets specifically for use with federated identity, and which
are implemented through the following string variables:

SOCIAL MEDIA SOURCE SYSVAR NAME

Google GoogleDefaultSSOAppToken

GoogleDefaultSSOAppTokenSecret

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Default connection string

bp.Vars.ShowSocialGoogleSheets = true;
bp.Vars. GoogleSheetsConnectionString =
"Offline=false;user={0};password={1};";

}

Social Media Datasource Creation
There is a set of Boolean variables that determine whether specific social media
Datasources will display as available Datasource types when creating new Data-
source objects in the Process Director interface. Setting the value to "false" means
that the item won't be displayed in the Datasource Type dropdown in the Create
Datasource screen of the Process Director interface.

380 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

The available variables are listed below.

l ShowSocialGoogleSheets
l ShowSocialAmazonDB
l ShowSocialSalesforce
l ShowSocialDropbox
l ShowSocialLinkedIn
l ShowSocialOneDrive
l ShowSocialBoxNET
l ShowDynamics

Developer's Reference Guide | 381

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Default connection string

bp.Vars.ShowSocialOneDrive= false;
bp.Vars.ShowDynamics= false;

}

Additional Social Media variables are documented below.

AmazonDBConnectionString
This string variable enables you to customize the connection string to Amazon DB.
The default value is shown in the example below.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Default connection string

bp.Vars.AmazonDBConnectionString =
 "Offline=False;Access Key={0};Secret Key={1}";
}

DynamicsConnectionString
This string variable enables you to customize the connection string to Microsoft
Dynamics CRM. The default value is shown in the example below.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Default connection string
bp.Vars.DynamicsConnectionString = "User={0};Password={1};

 Url={2};CRMVersion=CRM 2013;";
}

SalesforceConnectionString
This string variable enables you to customize the connection string to SalesForce.
The default value is shown in the example below.

382 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Default connection string

bp.Vars.SalesforceConnectionString = "User={0};Password=
{1};
 Security Token={2}";
}

System Custom Variables
System-Level Custom Variables can be set to control the general operation of the
Process Director installation.

EmbedDocumentTypes
This variable enables you to control document types are displayed using the
EMBED tag in the browser. You can inspect or modify this list.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Add the MP4 file type as one to display using the EMBED
tag

bp.Vars.EmbedDocumentTypes.Add("mp4");
}

fAllowUnencodedSysvarsinBV
This variable disables the ability for users to configure a Custom Task or Business
Value using SQL Commands that do not use the proper SQL encoding for variables
contained in the SQL Statements. When set to "false", Process Director won't allow
the Custom Task or Business Value to be saved until all of the variables used in the
SQL statement have been given the appropriate SQL-safe encodings specified in
the system Variables Reference Guide. For example, using a parameter in a Busi-
ness Value's SQL statement might require the SQL-safe encoding symbol "$" in the
parameter variable like this:
SELECT * FROM Training_ Vendor WHERE VendorName LIKE '%
{$PARAMETER:Vendor}%'

Developer's Reference Guide | 383

Parameters.htm#EncodeTypes
Parameters.htm#EncodeTypes

BP Logix Inc
Process Director Documentation

The default value for this custom variable is "true". When set to "true", Process Dir-
ector will issue a warning to the user that variables aren't properly encoded, but
will allow them to save the configuration.

BP Logix recommends that you set this custom variable to "false", if
possible. You may—indeed, probably—have existing Custom Tasks or Busi-
ness Values whose variable values aren't properly encoded, so you should
not set this value to "false" until you've ensured that all of your existing
Custom Tasks and Business Values use the proper encodings.

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Prevent saving CT or BV configurations that don't use
SQL-safe
 // encodings for variable values.

bp.Vars.fAllowUnencodedSysvarsinBV = false;
}

fCloseEditAfterUpload
If this system variable is set to true, the popup that appears after a check-in will
close automatically when the upload completes.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // the popup appearing after a successful check-in will
not
 // close while fCloseEditAfterUpload is set to false

bp.Vars.fCloseEditAfterUpload = false;
}

fCopyRefsFromRealProcessToKViewProcess
When starting a process from a Knowledge View against returned form instances,
the system will copy all attachment references from the original process associated
with the form instance to the process instance that is being started by the Know-
ledge View. This enables Custom Tasks like Convert to PDF and Export Items to

384 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

work with the original documents/form instances that are in the original process.
The default behavior can be disabled by setting this custom variable to "false".
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Disable copying of original attachments when a process
 // is initiated via Knowledge View

bp.Vars.fCopyRefsFromRealProcessToKViewProcess = false;
}

fDeleteDocOnRemove
When true, this option immediately deletes documents when not referenced by
any other Form instance. When false, documents are marked for deletion, and actu-
ally deleted during normal clean-up processing.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 //Deletes documents immediately when they are removed

bp.Vars.fDeleteDocOnRemove = true;
}

fDisableCSVNumberStringLogic
Prior to v5.31, when importing a CSV with numbers and strings in a column, the sys-
tem, by default, looked at the first row of the CSV file to determine the data type.
This could result in a data type error when the first row contains a number and sub-
sequent rows contain character strings. For v5.31 and higher, data imported will
default to the String datatype, unless a different datatype is specified in the header
row. This variable, when set to "true", will disable the new logic, and revert to the
pre-v5.31 conversion logic. The default value for this variable is "false".

Developer's Reference Guide | 385

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Revert to the old CSV field type logic
bp.Vars.fDisableCSVNumberStringLogic = true;

}

fDocRenameLogicOff
This variable permits the name of a document object in the content list to be
changed to match the name of the document being checked in, when set to "true".
The default value is "false", i.e., that the name in the content list is retained even if
the document being checked in has a different name.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Turn on object renaming
bp.Vars.fDocRenameLogicOff = true;

}

fEnableContentListLimit
This variable, when set to "false", will display an unlimited number of objects that
reside in a Content List folder when it is viewed. This may have serious impact on
performance when navigating through the Content List. The default value for this
variable is "true", and it applies the default limit (1000) for the number of items
that can be returned, or, alternatively, the number of items specified in the
nKViewBuiltinMaxResults custom variable, when configured.

For Process Director v6.1.003 and below, the default value for this vari-
able was "false".

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Will enable display of an unlimited number of Content

386 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

List folder items.
 // May impact performance when navigating through the Con-
tent List.

bp.Vars.fEnableContentListLimit = false;
}

fEnableJavaScriptDev
This variable permits form variables to be set or retrieved from JavaScript, when
set to the default value of "true". Setting this value to "false" disables this beha-
vior.
Vars.cs Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Disable JavaScript access to vars
bp.Vars.fEnableJavaScriptDev = false;

}

JavaScript Example
By default, JavaScript can be used to get or set form value for controls that aren't
contained in a Form array. The best practice for this type of use would most often
be to insert the JavaScript into an HTML Control on the Form.

<script>
// Function call to get form data from a Form via

JavaScript
 function getVariable()

{
 var frmValue = CurrentForm.FormControls["FORM_
VAR"].value;
 }

// Function call to set a Form field value with JavaScript
 function setFieldValue()

{
 var frmValue = "SomeValue";
 CurrentForm.FormControls["FORM_VAR"].value = frmValue;
 }
</script>

fEnableSQLEscape

Developer's Reference Guide | 387

BP Logix Inc
Process Director Documentation

When you run a SELECT statement that contains a LIKE operator and an ESCAPE
clause in SQL Server 2008 R2, SQL Server 2012, or SQL Server 2014, SQL Server may
use an inefficient query plan for the statement. Additionally, the performance of
the statement is low. This SQL Server bug can cause a performance problem with
Knowledge Views searching for form data using "contains", especially when using
the "contains" operator with wildcard characters. This Custom variable, when set
to "true", alters the operation of these queries to improve performance and help
mitigate this SQL Server bug. The default value for this variable is "false".
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Mitigate SQL Server bug for LIKE/Wildcard queries
bp.Vars.fEnableSQLEscape = true;

}

FileUploadBlacklist
This property accepts a comma-separated string of file extension that, when set,
will prevent files with those file extensions from being uploaded via any attach-
ment control. This property is a universal blacklist of file uploads for files with the
listed extensions.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Disables upload of listed file types
bp.Vars.FileUploadBlacklist = "dotx, xltx, dot, xlt";

}

FileUploadBlacklistAlternateText
This property enables you to universally set the Allowed File Alternate Text
property of Attach Object controls, instead of setting the property individually in
the control.

388 | Developer's Reference Guide

Form Online Controls Attachments.htm#AttachObjects

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Disables upload of listed file types
bp.Vars.FileUploadBlacklistAlternateText =

 "Word Documents, Excel Spreadsheets, Word Templates,
Excel Templates";
}

Locales
Process Director enables the addition of locales by editing the vars.cs file.
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // If you comment out the first line,
 // it will append new values to the default list

// Otherwise a new list will be created
Locales = new List<NameValue>();
Locales.Add(new NameValue("English", "en"));

}

ObjectLockingEnable
This boolean variable enables you to turn off object locking by setting the value to
"false". The default value is "true".
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // This will enable object locking.

bp.Vars.ObjectLockingEnable = true;
}

ObjectLockingForce
This boolean variable enables you to require object locking when set to "true". The
default value is "false".

Developer's Reference Guide | 389

Managing Content Locking.htm
Managing Content Locking.htm

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // This will require object locking when set to true.

bp.Vars.ObjectLockingForce = false;
}

Project Reminder Times
This variable enables you to customize the default reminder times that are dis-
played in a Timeline Activity's Notifications tab.
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Activity Reminder times
 // If you comment out this next line, it will append new
values to
 // the default list
 // Otherwise, a new list will be created

bp.Vars.ProjectReminderTimes= new List<TimeValue>();
bp.Vars.ProjectReminderTimes.Add(new TimeValue(-1 * (60 *

60 * 24),
 "1 Day Before Due"));

bp.Vars.ProjectReminderTimes.Add(new TimeValue(-2 * (60 *
60 * 24),
 "2 Days Before Due"));

bp.Vars.ProjectReminderTimes.Add(new TimeValue(1 * (60 *
60 * 4),
 "Every 4 Hours"));

bp.Vars.ProjectReminderTimes.Add(new TimeValue(1 * (60 *
60 * 24),
 "Every Day"));

bp.Vars.ProjectReminderTimes.Add(new TimeValue(4 * (60 *
60 * 24),
 "Every 4 Days"));

bp.Vars.ProjectReminderTimes.Add(new TimeValue(7 * (60 *
60 * 24),
 "Every Week"));
}

UploadTempPath

390 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

This variable enables you to specify a folder to use as a temporary folder when
using the Multi- File Upload functionality with the AttachObjects control. The
default system temp path may not release large file uploads properly. Setting your
own folder in the folder system can alleviate this issue.
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Set the temporary path for large file uploads
 CV.UploadTempPath = @"m:\tempupload";
}

Workflow Reminder Times
Process Director enables the reminder times in the process definition to be cus-
tomized in the dropdown lists.

The Workflow object has largely been deprecated by the Process
Timeline. BP Logix recommends the use of the Process Timeline as the
process model for all new development.

Developer's Reference Guide | 391

BP Logix Inc
Process Director Documentation

Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Step Reminder times
 // If you comment out this next line, it will append new
values to
 // the default list
 // Otherwise, a new list will be created

bp.Vars.StepReminderTimes = new List<TimeValue>();
bp.Vars.StepReminderTimes.Add(new TimeValue(-1 * (60 * 60

* 24),
 "1 Day Before Due"));

bp.Vars.StepReminderTimes.Add(new TimeValue(-2 * (60 * 60
* 24),
 "2 Days Before Due"));

bp.Vars.StepReminderTimes.Add(new TimeValue(1 * (60 * 60 *
4),
 "Every 4 Hours"));

bp.Vars.StepReminderTimes.Add(new TimeValue(1 * (60 * 60 *
24),
 "Every Day"));

bp.Vars.StepReminderTimes.Add(new TimeValue(4 * (60 * 60 *
24),
 "Every 4 Days"));

bp.Vars.StepReminderTimes.Add(new TimeValue(7 * (60 * 60 *
24),
 "Every Week"));
}

Task Custom Variables
Custom variables in this section of the documentation can be used to customize a
variety of settings associated with user tasks.

AlwaysFindTaskForForms
When this flag is set to true, forms will attempt to associate with a task when
opened. If this is left as the default (false), forms will only associate with a task
when opened from a task list Knowledge View.

392 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.AlwaysFindTaskForForms = true;
}

fCancelSubWorkflows
If this system variable is set to false, cancelling a process or process task won't can-
cel their associated sub-processes.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Cancellations of tasks or processes won't cancel sub-
 // processes

bp.Vars.fCancelSubWorkflows = false;
}

fEnableUndelegationRestart
When a user who is participating in a running task delegates to another user who
is already running in the same step/activity, the original user is canceled and the
delegated user is left running. When undelegating, this system variable, when set
to "true", will allow the original user's to be restarted if that step/activity is still run-
ning for the delegated user. More information about how this variable affects user
delegation is available in the User Delegation topic of the System Administrator's
Guide.
This variable should be set in the PreSetSystemVars() function of the customization
file.
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Original user will be restarted when the delegation is
removed
 // from a running task.

bp.Vars.fEnableUndelegationRestart = true;
}

Developer's Reference Guide | 393

User Delegation.htm

BP Logix Inc
Process Director Documentation

fForceInviteEmail
This system variable, when set to "false", enables you to prevent the standard task
assignment email notification from being sent to users who are invited to a task
using the email invite feature. The default value for this variable is "true".
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Prevent assignment emails from being sent to invited
task assignees

bp.Vars.fForceInviteEmail = false;
}

fPreventTaskCompleteIfCheckout
When set to true, this option prevents users from completing a task if they've
checked out a document while working on that task, and haven't yet checked it in.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Prevents user from completing a task
 // if he performed a check out on a
 // document and hasn't checked it in

bp.Vars.fPreventTaskCompleteIfCheckout = true;
}

fSendEmailOnWfAdmin
When set to true, This variable will force an email to be sent when a user is added
to a running step/activity by an administrator. The default value is false.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Send an email on administrative user additions to a
task

bp.Vars.fSendEmailOnWfAdmin = true;
}

394 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

fShowResultOnNotNeeded
This option, when set to "true" will display the task result in the routing slip when
the task is completed by an automated or external process. When a task’s “Com-
pleted When” condition is "When Any Result Condition is Met" and a non-user res-
ult condition is met, (such as a check box being checked), the result of that
automated or external process is shown in the routing slip. By default, this variable
is set to "false".
When an activity is configured to complete when "All Users Complete or Result
Condition Met", this variable will show the activity status associated with each of
the users that were not needed.
This variable should be set in the PreSetSystemVars() function of the customization
file.
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Users marked as "not Needed" will display in the Rout-
ing Slip

bp.Vars.fShowResultOnNotNeeded = true;
}

fStartUsersAddedToGroup
This option, when set to "true" will automatically add users to a running instance
of a process task when the users are added to the group assigned to the task. The
default setting for this custom variable is "false".
This variable should be set in the PreSetSystemVars() function of the customization
file.
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// New group users will automatically be added to running
tasks

bp.Vars.fStartUsersAddedToGroup = true;
}

Developer's Reference Guide | 395

BP Logix Inc
Process Director Documentation

TaskAlreadyCompleteAlert
This variable enables you to configure the message displayed in the alert box that
will display when the user tries to open a task that has already been completed. Set
to “” if you don't want the alert to display at all.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.TaskAlreadyCompleteAlert = ""; //Alert won't dis-
play
}

TaskAlreadyCompleteMessage
This variable enables you to configure a text message displayed on the page that
will be displayed when the user tries to open a task that has already been com-
pleted. This only applies when the page to which the user is directed resides in Pro-
cess Director. Set to “” if you don't want the message to display at all.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.TaskAlreadyCompleteMessage = ""; //Message won't
display
}

TaskAlreadyCompletePage
This variable enables you to configure which page is displayed when the user tries
to open a task that is already complete. You can set this variable to an HTML link of
the page you wish displayed. By default, the home page is displayed. You can set
the variable to "null" will display the process instance page. You can also specify
that Process Director shows the Form associated with the task by setting the vari-
able to "form.aspx".

396 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Displays process instance page
 // To display the Form associated with the task use:
 // bp.Vars.TaskAlreadyCompletePage = "form.aspx";

bp.Vars.TaskAlreadyCompletePage = null;
}

TaskAssignedReminderTimes
This variable enables you to add an option to the reminder dropdown in a Timeline
Activity that will remind the user he has been assigned that activity a given number
of seconds after it has been assigned to him.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Add a new reminder time
bp.Vars.TaskAssignedReminderTimes.Add(new TimeValue(1 *

(10 * 60),
 "Ten minutes after task is assigned.");
}

Task Due Reminder Times
Task Due reminder Times are times that reminders should be sent after a task's
due date has passed. In the example below, the reminder times add additional
reminder options to the standard list, and once added, will also appear in the drop-
down control as selectable options.

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.TaskDueReminderTimes.Add(new TimeValue(-1 * (24 *
(60 * 60)),
 "Every 1 day after task is due"));

bp.Vars.TaskDueReminderTimes.Add(new TimeValue(-2 * (24 *
(60 * 60)),
 "Every 2 days after task is due"));

bp.Vars.TaskDueReminderTimes.Add(new TimeValue(-3 * (24 *
(60 * 60)),
 "Every 3 days after task is due"));

Developer's Reference Guide | 397

BP Logix Inc
Process Director Documentation

bp.Vars.TaskDueReminderTimes.Add(new TimeValue(1 * (10 *
60),
 "Ten minutes after task is due.");

bp.Vars.TaskDueReminderTimes.Add(new TimeValue(-1 * (10 *
60),
 "Every ten minutes after task is due.");
}

User Info SlideOut Custom Variables
The User Info Slideout is a control that appears when you click the upper left
corner of the Process Director screen. It contains a variety of information about the
logged-in user, and can include the Name, email address, image, and other items
that can be customized by using the custom variables in this section of the doc-
umentation.

fDisableUserProfileEmailChange
This variable, when set to "true" disables all end users' ability to change their
email addresses via the User Profile page. The default value for this variable is
"false".
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Prevent users from changing their email addresses
bp.Vars.fDisableUserProfileEmailChange = true;

}

fTurnOffUserProfileTimeZone

398 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

By default, users are allowed to control the time zone setting in their user profile.
Setting this variable to “true” disables this ability.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Prevent users from setting time zones
bp.Vars.fTurnOffUserProfileTimeZone= true;

}

UserInfoShowSignOut
Setting this system variable to true enables you to show the Sign Out button on the
user info slide panel.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Hide the user info slideout
bp.Vars.UserInfoShowSignOut = false;

}

fTurnOffDelegation
This variable , when set to "true" will remove the ability for users to perform del-
egation from their User Profile page. The default value for this variable is "false".
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// This will disable user delegation in the user profile.
bp.Vars.fTurnOffDelegation = true;

}

fTurnOffSharedDelegation
This variable , when set to "true" will remove the ability for users to perform
shared delegation from their user profile page. The default value for this variable is
"false".

Developer's Reference Guide | 399

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// This will disable shared delegation ability in the user
profile.

bp.Vars.fTurnOffSharedDelegation = true;
}

fTurnOffUserProfileEmail
By default, users are allowed to disable their email from their user profile. Setting
this variable to “true” disables this ability.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Prevent users from disabling email
bp.Vars.fTurnOffUserProfileEmail= true;

}

UserInfoSlideOut
This system variable determines what information will be displayed in the user info
slide panel. The system variable can contain HTML and system variables.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Format the user info slideout
bp.Vars.UserInfoSlideOut = “<span style=’font-

weight:bold;’>
{Curr_User,format=name}
{Curr_User-

,format=email}

{server_name}”;
}

UserInfoShowEditProfile
This system variable enables you to determine whether the “Edit Profile” button
will display in the user info slide panel. If this variable is set to true, the button will
be displayed. Otherwise, it will not.

400 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Disable user edits
bp.Vars.UserInfoShowEditProfile = false;

}

User Interface Custom Variables
These Custom Variables control the appearance of the Process Director's user
interface for end users.

AllowRichTextTemplate
When this flag is set to true, Process Director will attempt to transfer Rich Text con-
tent into PDF form fields that are set to accept Rich Text content. There are lim-
itations to this ability, which are explained in the PDF Rich Text Field Support
section of the PDF Custom Tasks topic.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.AllowRichTextTemplate = true;
}

AutoMultilineTextBoxResize
By default, an Input control placed on a Form, whose Rows property is set to the
default setting of "1", will be displayed at run-time as an HTML Text control. Set-
ting the Rows property to a value of "2" or higher, will, at run-time, convert the con-
trol to an HTML TextArea control. This variable, when set to "true", will place a
resizing handle on all TextArea controls. Users will be able to resize the control to
the height and width they desire while entering data. Otherwise, the control's size
will remain fixed, and scrollbars will appear as more data is entered than can be
vertically displayed in the control.
In addition, this variable, in conjunction with the AutoMul-
tilineTextBoxResizeClass Custom Variable, can enable the automatic resizing
of TextArea controls as you type. A default CSS class, BPExpanding, is designed to

Developer's Reference Guide | 401

PDF Custom Tasks.htm#RichTextSupport

BP Logix Inc
Process Director Documentation

automatically resize a TextArea while you type, by automatically expanding the con-
trol vertically for each new line, as needed. The example below shows the con-
figuration you'll need to add to the customization file in order to enable automatic
resizing.
Once you've configured both the AutoMultilineTextBoxResize and AutoMul-
tilineTextBoxResizeClass variable, you can enable the feature in each Input
control by setting the control's CSS Class property to BPExpanding. Controls
without this CSS Class property setting won't automatically expand.
If you do not add the AutoMultilineTextBoxResizeClass variable to enable
auto-resizing, the TextArea control will still be manually resizable when AutoMul-
tilineTextBoxResize is set to True.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Enable resizing for multi-line text boxes
bp.Vars.AutoMultilineTextBoxResize = true;

 // Invoke the default class to enable auto-resizing
bp.Vars.AutoMultilineTextBoxResizeClass = "BPExpanding";

}

AutoMultilineTextBoxResizeClass
By default, Process Director uses a CSS class named BPexpanding to implement
auto-resizing for Input controls. You can change the default class to a class of your
own design, by setting the class name with this custom variable.
Each Input control that you wish to auto-resize must use the name of your custom
class as its CSS Class property, instead of BPExpanding.

Use of this custom variable requires that the AutoMul-
tilineTextBoxResize variable be set to "true".

402 | Developer's Reference Guide

Form Online Controls Basic.htm#autosize
Form Online Controls Basic.htm#autosize

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Enable autosized text boxes
bp.Vars.AutoMultilineTextBoxResize = true;

// Use a custom class to enable it
bp.Vars.AutoMultilineTextBoxResizeClass = "myCus-

tomCSSClass";
}

bpFormOpenSize
Enables you to set custom sizes / position for forms that are opened.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// All forms should open at position 10,10 with size
700,600

bp.Vars.bpFormOpenSize = "top-
p=10,left=10,height=700,width=600";
}

bpPopupOpenSize
Enables you to set custom sizes / position for all popup windows such as user pick-
ers.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// All popups should open at position 10,10 with size
700,600

bp.Vars.bpPopupOpenSize = "top-
p=10,left=10,height=700,width=600";
}

CustomHTMLHeadTags
This variable enables you to enter an HTML string to define custom Head tags for
the HTML pages displayed in Process Director.

Developer's Reference Guide | 403

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.CustomHTMLHeadTags = "<link href-
f=\"http://sample.bplogix.com/custom
 /sample-bp-icon.jpg\"
 rel=\"apple-touch-icon\"><link rel=\"stylesheet\"
 type=\"text/css\" href=\"theme.css\">";
}

DisableInlineErrorsWithPopup
This variable, when set to "true", suppresses the inline form validation error mes-
sages on a Form when using the option to display error messages in a popup. The
default for this option is "False".
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Suppress inline error messages when using Popup error
messages

bp.Vars.DisableInlineErrorsWithPopup = true;
}

DisableParentRefreshForm
This variable enables you to disable the auto refreshing of the parent browser
when forms are completed.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.DisableParentRefreshForm = true;
}

EnableReactAdminPages
This variable was implemented in Process Director v5.44.600. When set to "false", it
disables the redesigned look of some IT Admin pages to display the classic view.
The default value for this variable is "true".

404 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Disable admin page UI updates.
bp.Vars.EnableReactAdminPages = false;

}

ErrorPage
This string variable enables you to set the URL of a custom error page to display
when a Process Director error occurs. The custom error page should be placed into
the /custom folder at the website root to ensure that they aren't overwritten dur-
ing an upgrade of the product. An HTML and ASPX sample error page are included
in the /custom folder by default.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// This will set the URL of the custom error page.
bp.Vars.ErrorPage = "http://server-

name.com/custom/error.htm";
}

fEnableAccessibility
Available in Process Director v5.34 or higher, this Boolean variable, when set to
"true," enables advanced accessibility features for Process Director. The default
value for this variable is "false".
Advanced accessibility features include:

1. Improved contrast
2. Improved hover and focus indicators
3. Increased font sizes
4. Addition of structural element (main)
5. Proper use of heading tags (h1, h2...)
6. Proper use of the alt attribute
7. Keyboard support for images that had only mouse support
8. Setting default language in html tag

Developer's Reference Guide | 405

BP Logix Inc
Process Director Documentation

9. Use HTML5 specification for document type
10. Make error message easier to locate by added aria-describedby attribute

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Enable automatic accesibility features
bp.Vars.fEnableAccessibility = true;

}

fIncludeBootstrap
This variable, when set to true, enables you to use the Bootstrap controls in the
Online Form Designer's Responsive Layout menu, and provides visual markers on
the design surface for the Bootstrap controls. The default setting for this variable is
false.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Enable Bootstrap in the Online Form Designer
bp.Vars.fIncludeBootstrap = true;

}

EnableFormThemes
This variable, when set to "false" enables the Dropdown control to properly display
type-ahead functionality. The default value is "true".

This variable was previously used to enable Telerik themes for forms,
but this functionality has been deprecated.

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Revert to unthemed operation, and enable
 // dropdown type-ahead.

bp.Vars.EnableFormThemes = false;
}

406 | Developer's Reference Guide

Form Online Controls Responsive.htm

BP Logix Inc
Process Director Documentation

fDisableDetailedAttach
This variable enables you to control whether the show the detailed option for
attaching documents to forms.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Disable the detailed attach on upload

bp.Vars.fDisableDetailedAttach = true;
}

fDisableImageResize
When true, this option disables automatic image resizing and rotating. Images are,
by default, resized and rotated to display properly on mobile devices and when
embedded in frames.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // disables automatic image resizing and rotating

bp.Vars.fDisableImageResize = true;
}

Occasionally, When using Process Director, you may encounter a generic GDI+
error when attempting to display a PNG file.Setting fDisableImageResize to false
will prevent the error from occurring.

fOpenFormNewTab
Available in Process Director v6.1.400 and higher, this variable, when set to true,
opens Forms in a new browser tab, instead of a new browser pop-up window.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Open Forms in a new browser tab

bp.Vars.fOpenFormNewTab = true;
}

Developer's Reference Guide | 407

BP Logix Inc
Process Director Documentation

sDisableNavigationScroll
This variable enables you to disable the system navigation scrolling for navigation
buttons in a Workspace's navigation bar. This variable is set to false by default.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // This will disable the scrolling of system navigation

bp.Vars.sDisableNavigationScroll = true;
}

fDocRemovedInPopup
This variable changes the system behavior when the user clicks on the download
link on a document that has had its binary data removed, but the document arti-
fact remains in the system. The default behavior is to replace the currently dis-
played Form with a custom error page in the same window.
When setting this variable to "true", the custom error page identified in the sCus-
tomURL_DocRemoved variable will open in a new window instead of replacing the
current Form in the same window.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Cause the page that displayed the document error
 // message to occur in a popup, the default is false

bp.Vars.fDocRemovedInPopup = true;
}

fEnableKViewFilterOnSavedForLater
By default, incomplete forms that have been saved for later display in Task List
Knowledge Views, irrespective of filters that may be applied to the Knowledge
View. This Boolean variable, when set to "true," enables Process Director to filter
incomplete forms and hide them from the Task List results.

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Enable Task List filtering for saved/incomplete forms

408 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

bp.Vars.fEnableKViewFilterOnSavedForLater = true;
}

fEnableMultiLanguage
By default, Label text values are static once set. For users of Process Director
v5.44.500 and higher, this Custom Variable will, when set to True, enable dynamic
setting of Label text. This feature is primarily intended to support accessibility for
multilingual user interfaces where the Label text must change based on the user's
language.

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Enable dynamic text for labels
bp.Vars.fEnableMultiLanguage = true;

}

fEnableThumbnails
This Boolean variable enables thumbnails of attached files to be shown in ShowAt-
tachment Controls. The default value of this flag is "true". When set to "false", Pro-
cess Director will no longer show options on the ShowAttach Form control to
display the thumbnail for supported document types.
You can optionally set the height and width of the thumbnails by setting Thumb-
nailWidth and/or ThumbnailHeight to the desired dimensions in pixels.

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Enables thumbnails for attachments
 bp.Vars.fEnableThumbnails = true;

// Sets thumbnail width to display in pixels
bp.Vars.ThumbnailWidth = 75;

}

fIgnoreAccessibilityFlag
This system variable enables Process Director to ignore some settings for the
Switch control, to improve accessibility for that control. This variable overrides the
default fEnableAccessibility setting for the control.

Developer's Reference Guide | 409

Form Online Controls Attachments.htm#ShowAttachedObjects

BP Logix Inc
Process Director Documentation

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Ignore accessibility setting to Display the Switch con-
trol

bp.Vars.fIgnoreAccessibilityFlag = true;
}

fLoginBgRand
This variable , when set to "true" will display a random background image on the
login page. The default value for this variable is "false".
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Enable random background images for login page
bp.Vars.fLoginBgRand = true;

}

FormEditorConfig
Users of Process Director v5.0 and higher have the ability to use the Online Form
Designer (OFD) to design Forms. The toolbars that appear in the OFD can be cus-
tomized by creating a JavaScript configuration file that you can upload to the /cus-
tom folder of the Process Director installation. Documentation for the CKEditor's
Toolbar configuration can be found at the CKEditor Documentation web site.
This variable specifies the location of a custom JavaScript configuration file to use,
in addition to the default file, and primarily enables you to customize the fonts
used by and displayed in the OFD. This variable will universally effect the available
controls for every form definition.
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Set a custom configuration file for the Form Editor
bp.Vars.FormEditorConfig = "/custom/cust_config.js";

}

410 | Developer's Reference Guide

https://docs.ckeditor.com/ckeditor4/latest/api/CKEDITOR_config.html#cfg-toolbar

BP Logix Inc
Process Director Documentation

Notice that you need to use full client path, without using a "~", in the URL to the
Configuration file.
You must create a cust_config.js file in the Custom folder of your Process Director
Installation.
For more information about how to perform customization of the OFD, please see
the UI Customization topic.

fShowDisabledUsers
When set to true, Process Director will display disabled users in all dialogs and
user pickers. This variable is set to false by default.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Display disabled users
bp.Vars.fShowDisabledUsers = true;

}

fShowPredictedDates
This boolean variable sets whether to hide the predicted start/end dates from the
routing slip. The default value is false.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Hide predicted dates on the Routing Slip
bp.Vars.fShowPredictedDates = false;

}

fShowProcessCancelReasonOnUser
When a process or activity/step is canceled, and that results in a user being can-
celed, the administrative comment will be added to the user record in the Routing
Slip indicating why it was canceled if this variable is set to "true". The default value
for this variable is "false".

Developer's Reference Guide | 411

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Show cancellation reason on Routing Slip
bp.Vars.fShowProcessCancelReasonOnUser = true;

}

InlineDocumentTypes
This variable enables you to control document types are displayed “inline” in the
browser. You can inspect or modify this list.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Add the ZIP file type as one to display “inline”

bp.Vars.InlineDocumentTypes.Add("ZIP");
}

LeaveCaseButtonText
This variable enables you to change the default text used in the User Info Box to
close a case folder. By setting the variable, you can change the default "Leave
Case" text to custom text of your choice.
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Change text of the Leave Case button

bp.Vars.LeaveCaseButtonText= "Leave Case text";
}

LoginMessage
This variable enables you to set a string on the login page. This string can contain
HTML syntax.

412 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Set HTML message on login page
bp.Vars.LoginMessage = "Welcome to Process Director.

 <a href='http://bplogix.com/' "+
"target='_blank'>Click Herefor the BP Logix web

site.";
}

nFormOpenProps
This variable enables you to set an option to open a form in normal, maximized or
full screen mode.
Values

VALUE NAME DESCRIPTION DEFAULT

FormOpenProps.Normal Comes up as a
popup window
smaller than
the screen size

FormOpenProps.Maximized Comes up as a
popup sized to
the full screen

Default

FormOpenProps.UseFullScreen Uses the
browser full
screen para-
meter to max-
imize the
popup window

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Sets Forms to open in a normal window

bp.Vars.nFormOpenProps = FormOpenProps.Normal;
}

Developer's Reference Guide | 413

BP Logix Inc
Process Director Documentation

nHomeTopHeight
This variable enables you to set the height of the navigation bar on the home page
in pixels. This may be needed if you customize the logo.
Example

public override void SetSystemVars (BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Set top home bar height to 60 pixels
bp.Vars.nHomeTopHeight = 60;

}

nHomeTopWidth
This variable enables you to set the width of the custom logo on the home page in
pixels.
Example

public override void SetSystemVars (BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Set custom logo width to 200 pixels
bp.Vars.nHomeTopWidth = 200;

}

nPDFPageWidth
This variable enables you to control the width in pixels of forms converted into
PDF. 0 sets the width automatically.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // 1024 pixel width for converted PDFs

bp.Vars.nPDFPageWidth = 1024;
}

nTaskCompleteDialogWidth
This variable sets the width of the "Completing Task" popup that appears when a
task is completed from the Task List. In most cases, this setting will never need to
be adjusted.

414 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars (BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// The width of the popup that says "completing task".
bp.Vars.nTaskCompleteDialogWidth = 20;

}

nTaskCompleteDialogHeight
This variable sets the height of the "Completing Task" popup that appears when a
task is completed from the Task List. In most cases, this setting will never need to
be adjusted.
Example

public override void SetSystemVars (BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// The height of the popup that says "completing task".
bp.Vars.nTaskCompleteDialogHeight = 20;

}

nTaskCompletePromptDialogWidth
This variable sets the width of the dialog box that prompts the user to enter task
completion comments when a task is completed from the Task List. In most cases,
this setting will never need to be adjusted.
Example

public override void SetSystemVars (BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// The width of the popup that PROMPTS the user to enter
completion comments.

bp.Vars.nTaskCompletePropmtDialogWidth= 500;
}

nTaskCompletePromptDialogHeight
This variable sets the height of the dialog box that prompts the user to enter task
completion comments when a task is completed from the Task List. In most cases,
this setting will never need to be adjusted.

Developer's Reference Guide | 415

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars (BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// The width of the popup that PROMPTS the user to enter
completion comments.

bp.Vars.nTaskCompletePromptDialogHeight= 250;
}

NTLM_NoLoginButton
This variable enables you to remove the NTLM login button on the home page.
Example

public override void PreSetSystemVars (BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

//Removes the Windows login button
bp.Vars.NTLM_NoLoginButton = true;

}

ResponsiveType
This variable enables improved responsive browser support for Forms. Enabling
responsive form support activates a number of features to make Forms display bet-
ter on small screens, including theArrayColumn Form control tag that reformats
array tables so that each column displays on a new row in small viewports, elim-
inating the need for horizontal scrolling.
The following options are available:

l ResponsiveTypes.None: Disables responsive support.
l ResponsiveTypes.Mobile: Enables responsive support only on mobile
devices.

l ResponsiveTypes.MobileSmall: Enables responsive support only on small
mobile devices, e.g., smartphones, but not iPads.

l ResponsiveTypes.All: Enables responsive support on all devices.

The default parameter for this variable is ResponsiveTypes.All for Process Dir-
ector v5.34 and higher. For prior versions of the product, the default value is
ResponsiveTypes.None.

416 | Developer's Reference Guide

Form Control Tags.htm#ArrayColumn

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

 // This will enable responsive formatting only on mobile
devices

bp.Vars.ResponsiveType = ResponsiveTypes.Mobile;

// This will enable responsive formatting on all devices.
 // It uses current window size to make decisions on format-
ting.

bp.Vars.ResponsiveType = ResponsiveTypes.All;

// This disables responsive support
bp.Vars.ResponsiveType = ResponsiveTypes.None;

}

sCkEditorCustomConfig
Users of Process Director v5.0 and higher have the ability to use the Text Editor on
Input controls, in addition to the Rich Text editor that is available in previous ver-
sions of the product. The Text Editor is a third-party control called CKEditor. The
toolbars that appear in the Text Editor can be customized by creating a JavaScript
configuration file that you can upload to the /custom folder of the Process Dir-
ector installation. Documentation for the CKEditor's Toolbar configuration can be
found at the CKEditor Documentation web site.
This system variable enables you to specify the location of the configuration file
you wish to use to customize the Text Editor's toolbars.
Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Specifies the location of the CKEditor config file

bp.Vars.sCkEditorCustomConfig = "/cus-
tom/js/myCKEditorConfig.js";
}

For more information about this customization, please see the UI Customization
topic.

sCustomURL_DocRemoved

Developer's Reference Guide | 417

https://docs.ckeditor.com/ckeditor4/latest/api/CKEDITOR_config.html#cfg-toolbar

BP Logix Inc
Process Director Documentation

This string variable enables you to provide a custom URL to which the user should
be redirected when trying to navigate to a document that has been removed from
a process.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // This will send the user to a custom error URL when try-
ing to
 // open a document that has been removed from the system.

bp.Vars.sCustomURL_DocRemoved = "http://server-
name/customUrl.htm";
}

sLoadingImage
This variable enables you customize the loading image that is displayed when the
system is waiting on a Form event. The preferred file format for the image should
be an animated GIF image.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Custom loading image
bp.Vars.sLoadingImage = "http://myserver/image.gif";

}

sLogoLink
This variable enables you customize the destination address if the logo is clicked.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Customize logo click URL
bp.Vars.sLogoLink = "http://myserver/my_intranet";

}

sLogoURL

418 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

This variable enables you customize the top left logo displayed on the home page.
Use a standard URL.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Customize logo image

bp.Vars.sLogoURL = "http://myserver/mylogo.gif";
}

SplitterWidth
This variable sets the width, in pixels, of the splitter bars that appear between port-
lets in a workspace. You can use this variable to set a custom width for the splitter
bars.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Sets the width of portlet splitter bars

bp.Vars.SplitterWidth = "10px";
}

ShowDocHistoryWhenDisabled
This variable, when set to "true", enables the history tab for document attach-
ments to display, even if the ShowAttach control is disabled. The default for this
option is "False".
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Shows the history for attachments when the ShowAttach
control
 // is disabled.

bp.Vars.ShowDocHistoryWhenDisabled = true;
}

sStyleEnabled
This variable enables you to set the system default style for enabled form fields.

Developer's Reference Guide | 419

Form Online Controls Attachments.htm#ShowAttachedObjects

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // This will set the default style for Enabled form fields
to a
 // white background

bp.Vars.sStyleEnabled = "background-color:White;";
}

sStyleDisabled
This variable enables you to set the system default style for disabled form fields.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // This will set the default style for disabled form
fields to a
 // gray background

bp.Vars.sStyleDisabled = "background-color:#CCCCCC;";
}

sStyleError
This variable enables you to set the system default style for form fields in an error
state.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// This will set the default style for form fields in an
error
 // state to a red background

bp.Vars.sStyleError = "background-color:Red;";
}

sStyleRequired
This variable enables you to set the system default style for required form fields.

420 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // This will set the default required style for form
fields to a
 // yellow background

bp.Vars.sStyleRequired = "background-color:#FFFF99;";
}

sUseCSS
This variable enables you to specify a CSS file containing definitions for CSS classes.
Forms will be stylized according to the code in the specified CSS files.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Adds two custom CSS Files

bp.Vars.sUseCSS.Add("~/custom/myStyles.css");
bp.Vars.sUseCSS.Add("~/custom/myStyles1.css");

}

For more information about system customization, please see the
UI Customization topic.

UseWorkspaceHome
When set to true, this system variable will use the Desktop Workspace layout for
the user’s home page.

The use of this variable was deprecated in Process Director v4.5.

Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Deprecated
bp.Vars.UseWorkspaceHome = true;

}

Workflow Step Colors

Developer's Reference Guide | 421

BP Logix Inc
Process Director Documentation

Process Director enables the colors for Process Timeline Activities and Activity Res-
ult buttons to be customized in the dropdown list of colors. You can add colors to
the existing list of colors, or you can create an entirely new list of your own devis-
ing.
To create your own list, start by adding the following lines of code to the PreSetSys-
temVars method in the Custom Vars file:
bp.Vars.WorkflowColors = new List<ColorValue> ();
bp.Vars.WorkflowColors.Add(new ColorValue("Default", "", ""));

This will create an entirely new list with a default color value, which will be the
standard default color in the interface, e.g., buttons will be the standard gray color.
You can then add additional colors to your list using the color addition code
described below.

If you merely want to add colors to the existing default color list,
don't include these lines.

To add a new colors to the existing list, or to the new list you created above, add
the following line for each desired color:
bp.Vars.WorkflowColors.Add (new ColorValue ("Label", "BackColor",
"ForeColor"));

The following Parameters are required for this line of code:
Label: The label that will appear for the color in the dropdown.
BackColor: The HTML hexadecimal, HTML named color, or RGB background color
of the dropdown item.
ForeColor: The HTML hexadecimal, HTML named color, or RGB foreground color
of the dropdown item.
So, using the following line of code:
bp.Vars.WorkflowColors.Add (new ColorValue ("Cornflower",
"#739CCB", "#FFFFFF"));

...will result in the following addition to the bottom of the color dropdown:

422 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Example

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Activity colors
 // If you add the line, it will create a new color list
 // to replace the default list

bp.Vars.WorkflowColors = new List<ColorValue>();

// Create a new default color entry for the new list.
bp.Vars.WorkflowColors.Add(new ColorValue("Default", "",

""));
// If you do NOT add these lines, the colors below will

 // simply be added to the default color list.

//Add colors to the list
bp.Vars.WorkflowColors.Add(new ColorValue("Lt Black",

"#333366", "#FFFFFF"));
bp.Vars.WorkflowColors.Add(new ColorValue("Lt Lavender",

"#FFCCFF", "#666666"));
bp.Vars.WorkflowColors.Add(new ColorValue("Yellow",

Developer's Reference Guide | 423

BP Logix Inc
Process Director Documentation

"#FFFF00", "#666666"));
bp.Vars.WorkflowColors.Add(new ColorValue("Dk Gray",

"#FFFF99", "#666666"));
}

This variable will also accept RGB color values, e.g., "rgb(255,0,0,)", in
addition to HTML color values.

User Custom Variables
These Custom Variables enable you to specify various user-related settings in Pro-
cess Director.

DefaultNewUsersToDayPass
This Custom Variable, when set to "true", will automatically create all new users as
Day Pass users. The default value of this variable is "false". This variable is relevant
only if you have the Day Passes license component.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Make all new users day pass users.
bp.Vars.DefaultNewUsersToDayPass = true;

}

DelegationAdminGroups
If a user is in any of the groups specified by this variable, the user will be able to
access the delegation administration page, even without the “User Admin” setting
enabled in his user profile.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

bp.Vars.DelegationAdminGroups = "Delegation Users";
}

fAllowLoginRememberMe

424 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

This variable enables you to control whether built-in users can ask Process Director
to remember their session so they don’t have to log in each time they visit Process
Director.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Allow users to use 'Remember Me' option
bp.Vars.fAllowLoginRememberMe = true;

}

fAllowRetrievePassword
This variable enables you to control whether built-in users can retrieve their pass-
words if they are forgotten. If set to true, a prompt will appear on the login page.
Development systems that use the TestUserEmailAddress won't send password
reset request email to the TestUserEmailAddress, but will, instead, send them to
the requesting user.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Allow users to retrieve passwords
bp.Vars.fAllowRetrievePassword = true;

}

fDisableImplicitPartitionGroupUsers
Users in groups are automatically added to a partition when the group is added to
the partition. They are implicitly added through their group membership. This
option, when set to "true" will prevent this implicit user addition, which means that
users will have to be explicitly added to a partition to be part of it.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 //Disables adding users to a partition implicitly.

bp.Vars.fDisableImplicitPartitionGroupUsers= true;
}

Developer's Reference Guide | 425

BP Logix Inc
Process Director Documentation

fDisableUserRenameOnDisable
This variable will, when set to "true", prevent a disabled user from being renamed
and preventing a new GUID from being applied during an update/synchronization.
The default value for this variable is "false".
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // Prevent disabled users from being renamed

bp.Vars.fDisableUserRenameOnDisable = true;
}

fSharedDelegationNextTask
Setting this variable to true will, when shared delegation is enabled, display the
next task to the delegate automatically, if the principal assignee of the current task
is also the principal assignee of the next task. This variable is set to false by default.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Automatically display the next task to the delegate
bp.Vars.fSharedDelegationNextTask = true;

}

fTurnOnDelegationGroups
By default, users are allowed to delegate tasks to any other user. Setting this vari-
able to “true” restricts the user's ability to set delegations, and limits delegations
only to other users who belong to the same group as the delegating user.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Restrict delegation to the same group as delegator
bp.Vars.fTurnOnDelegationGroups = true;

}

nUserInactivityTimeoutSecs

426 | Developer's Reference Guide

User Delegation.htm#SharedDelegation

BP Logix Inc
Process Director Documentation

This variable enables you to set the maximum number of seconds to elapse prior
to automatically logging out a user for inactivity. Once the configured time limit
expires, the user will be logged off, and will be forced to re-authenticate to access
the system again.
Example

public override void SetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{
 // This will set the maximum inactivity time to 2 hours.

bp.Vars.nUserInactivityTimeoutSecs = 60*60*2;
}

UI Customization

Please be aware that this topic is provided for informational pur-
poses, and the methods described here should be implemented only by
those with the appropriate experience with HTML, CSS, and JavaScript.

Process Director's user interface can be customized in many ways. In this topic
we'll discuss the basic process for customizing elements of the Process Director
interface.
One of the most common customization methods is to use a custom stylesheet to
change the display of various UI elements.
Process Director has an very extensive style sheet, named bpw.css, and, depend-
ing what version of Process Director you're running, a different version of this file
will be used to style your installation. You should never edit this stylesheet,
because you might seriously compromise the look and feel of the Process Director
installation. Moreover, this stylesheet will be overwritten every time you upgrade
or reinstall Process Director, so none of the changes you make would be per-
sistent.

Developer's Reference Guide | 427

BP Logix Inc
Process Director Documentation

Instead, you can create a custom stylesheet that overrides the styles that are
defined in bpw.css. This stylesheet can be placed somewhere in the /custom
folder to make any changes persistent, since, again, this folder isn't overwritten
during upgrade or reinstall. Moreover, the custom stylesheet will be much smaller,
since you're only trying to modify a few specific built-in Process Director styles, in
most cases, which makes creating it much simpler.
Creating this custom stylesheet will require some familiarity the bpw.css file, so
you might find it useful to download it from your installation. This can be done rel-
atively simply by using the Developer Tools built into your web browser. You can
press the [F12] key to open the Developer Tools, which will give you access to all of
the source files for a Process Director page, from which you can download
bpw.css.
For all of the examples presented in this topic, we'll use a custom CSS stylesheet
named custom.css, and we'll place it in the /custom/ui folder, so that all of our
UI customization files will be organizaed in a single subfolder of the /custom
folder.

Adding a Custom CSS Stylesheet to Process Director #
There are two methods for adding a custom CSS stylesheet to Process Director.

Installation Settings
On the Properties page of the Installation Settings section if the IT Admin area, the
CSS property will accept the file path of a custom CSS file.

428 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Alternatively, you can edit the Custom Variables file to add the sUseCSS Custom
Variable

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Use a Custom CSS stylesheet
 bp.Vars.sUseCSS.Add("~/custom/ui/custom.css"); // We need
the "~" here
}

Note the use of the tilde (~) character at the beginning of the file loc-
ation for both the Properties page and the sUseCSS Custom Variable. This

Developer's Reference Guide | 429

BP Logix Inc
Process Director Documentation

is a required shorthand character to prompt the server add in the first
part of the fully qualified URL of the file location in Process Director.

Customizing CKEditor #
For Process Director v5.00 and higher, a third-party tool, CKEditor, is used to
provide the form design and text formatting tools used in the Online Form
Designer (OFD) and in Input controls that are configured with the Use Text Editor
property selected when placed on a Form.
By default, the appearance of the CKEditor component is controlled by con-
figuration files that are installed with Process Director. This default configuration
can be overridden by the use of custom configuration files that you can add to
your Process Director Installation. Both the OFD and the Input control use different
configuration files, and each of these files can be overridden via the use of System
Variables that can be placed in the PreSetSystemVars portion of the custom vars
file, which is located at /custom/vars.cs.ascx. The /custom folder of a Process
Director installation not overwritten on upgrades, so any customization changes
made to the system always need to be stored in this folder, to ensure the cus-
tomization is persistent across versions.
The FormEditorConfig Custom Variable enables you to customize the OFD, while
the sCkEditorCustomConfig Custom Variable enables you to customize the Input
control's Text Editor.

If you make a mistake in the JavaScript configuration file for CKEd-
itor, you can always remove the FormEditorConfig or sCkEd-
itorCustomConfig setting from your Custom Variables file and return to
the default Process Director settings. None of the settings you configure
in a custom CKEditor configuration file are permanent, and can always be
rolled back to the Process Director default.

In both cases, a JavaScript configuration file needs to be specified for each Custom
Variable. Some knowledge of basic JavaScript syntax is required to use the con-
figuration file correctly. Happily, the syntax used in the configuration files is very
standardized, so it doesn't require too much effort to understand it.

430 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

We'll also be providing extensive examples here, so you can largely copy and paste
the examples right from this documentation topic. Also, full documentation for the
CKEditor's Toolbar configuration can be found at the CKEditor Documentation web
site.
If you wished to customize both the OFD and the display of the Input control's Text
Editor, you'd need to add the following lines of code to PresetSystemVars:

public override void PreSetSystemVars(BPLo-
gix.WorkflowDirector.SDK.bp bp)
{

// Change the config of the Input control's text editor
 bp.Vars.sCkEditorCustomConfig = "/custom/ui/cust_txt_con-
fig.js";

// Change the config of the Online Form Designer
 bp.Vars.FormEditorConfig = "/custom/ui/cust_ofd_
config.js";
}

You need to use the full client path, without using a "~", in the URL to
the Configuration file.

Note that, in the examples above, both of the customization files reside in the /cus-
tom/ui folder. Creating them in a subfolder helps to keep the system organized by
placing all of your UI customization files in the same folder. You could, of course,
place them in the /custom folder directly, but BP Logix recommends that you
organize subfolders for your customizations, to keep the /custom folder from get-
ting too cluttered. Note also that, in this example, the names of the JavaScript files
specifically identify whether the configuration refers to the Text Editor or the OFD.
Process Director has an existing configuration file for the CKEditor built into the
product. You won't ever edit that configuration file. Using a custom configuration
file will simply override your installation's default configuration with your custom
configuration from the customization file, but will never alter any of the built-in
default settings that BP Logix has configured for the CKEditor in the Online Form
Designer.
All of the customization files for CKEditor must have the CKEDITOR.editorConfig
function. It's the only function you'll place in the file, and all customization com-
mands must be placed insideit, as shown in the example below.

Developer's Reference Guide | 431

https://docs.ckeditor.com/ckeditor4/latest/api/CKEDITOR_config.html#cfg-toolbar
https://docs.ckeditor.com/ckeditor4/latest/api/CKEDITOR_config.html#cfg-toolbar

BP Logix Inc
Process Director Documentation

CKEDITOR.editorConfig = function (config) {
// All customization commands go here.

}

Customizing the Online Form Designer #

To see the changes you make to the configuration, you'll need to
delete your browser cache and reload the Process Director web page
every time you upload changed versions of vars.cs.ascx or any of the cus-
tomization files discussed in this topic.

In most cases where you might want to edit the tools that are displayed in the
OFD, you'll only want to remove certain tools that are of minimal use, or which you
don't want Form designers to access. The config.removeButtons command
enables you to list the buttons you want to remove from the OFD editor.
For instance, if you wanted to remove the iFrame, Smiley Face, and View Source
buttons from the OFD toolbars, your custom configuration file would contain only
the JavaScript below:

CKEDITOR.editorConfig = function (config) {
config.removeButtons = 'iFrame,Smiley,Source';

}

This configuration file would simply override the default configuration file to
remove the specified buttons. All the other default configuration settings would be
applied, since your custom configuration file only overrides the settings of those
three buttons. This is a much simpler solution for removing buttons than trying to
replicate the entire configuration.
Full Customization
The default configuration for the OFD looks something like the example below. The
config.toolbar command enables you to build the toolbars and tools you'd like
to use in the OFD.

CKEDITOR.editorConfig = function (config) {
// Define changes to default configuration here.
// For complete reference see:
// http://docs.ckeditor.com/#!/api/CKEDITOR.config
// Toolbar default configuration as set in /Editor/bp_

432 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

config.js
// These are all the tools that are available in the default
setup of the OFD

config.toolbar = [

//!!-
!!!!

// DO NOT EDIT THIS SECTION!
 // These are BP Logix Custom Tools.

{ name: 'document', items: ['BPSave', 'BPSaveOnly',
'BPSaveRun',
 'BPSaveTest', 'Bp-discard'] },

//!!-
!!!!

// Below are the built tools available via CKEditor
that can be edited safely

{ name: 'clipboard', items: ['Cut', 'Copy', 'Paste',
'PasteText',
 'PasteFromWord', '-', 'Undo', 'Redo'] },

{ name: 'editing', items: ['Find', 'Replace', '-',
'SelectAll', '-'] },

{ name: 'tools', items: ['ShowBlocks'] },
{ name: 'links', items: ['Link', 'Unlink', 'Anchor']

},
{ name: 'insert', items: ['Image', 'Table', 'Spe-

cialChar', 'Iframe', 'Smiley'] },
{ name: 'document', items: ['Source'] },

 '/',
{ name: 'basicstyles', items: ['Bold', 'Italic',

'Underline', 'Strike',
'Subscript', 'Superscript', '-', 'CopyFormatting',

'RemoveFormat'] },
{ name: 'styles', items: ['Format', 'Font',

'FontSize'] },
{ name: 'paragraph', items: ['NumberedList', 'Bul-

letedList', '-', 'Outdent',
 'Indent', '-', 'Blockquote', 'CreateDiv', '-',
'JustifyLeft', 'JustifyCenter',
 'JustifyRight', 'JustifyBlock', '-', 'BidiLtr',
'BidiRtl',] },

{ name: 'colors', items: ['TextColor', 'BGColor'] },

//!!-
!!!!

// DO NOT EDIT THIS SECTION!
 '/',
 '/',

// These are the common BP Logix control Tools.

Developer's Reference Guide | 433

BP Logix Inc
Process Director Documentation

{ name: 'common', items: [
 'bp-input-btn', 'bp-checkbox-btn', 'bp-datepicker-
btn', 'bp-dropdown-btn',
 'bp-radio-btn', 'bp-section-btn', 'bp-switch-btn'
]
 },

{
 // These are the remaining BP Logix control tools

// The items below are hidden in bpw.css, which
can't be edited.
 name: 'bplogix', items: [
 'Bp-attach', 'Bp-input', 'Bp-checkbox', 'Bp-
datepicker',
 'Bp-dropdown', 'Bp-radio', 'Bp-section',
 'Bp-routingslip', 'Bp-signaturecomments', 'Bp-
signaturecontrol',
 'Bp-signaturetopaz', 'Bp-commentlog', 'Bp-tab-
strip',
 'Bp-tabstripend','Bp-tabcontent', 'Bp-tab-
contentend',
 'Bp-sectionembedded', 'Bp-sectionembeddedend',
'Bp-arraystart',
 'Bp-arrayend', 'Bp-removerowinarray', 'Bp-
arraymoveup',
 'Bp-arraymovedown', 'Bp-removerow', 'Bp-
addrow', 'Bp-sort', 'Bp-sum',
 'Bp-button', 'Bp-buttonarea', 'Bp-print-
button', 'Bp-savebutton',
 'Bp-cancelprocessbutton', 'Bp-showattach',
'Bp-userpicker',
 'Bp-grouppicker', 'Bp-contentpicker', 'Bp-con-
trolpicker', 'Bp-listbox',

'Bp-slider', 'Bp-rating','Bp-lockform', 'Bp-
calculation',
 'Bp-datedifference', 'Bp-invite', 'Bp-sched-
uler', 'Bp-html',
 'Bp-datasourcepicker', 'Bp-categorypicker',
'Bp-attributepicker',
 'Bp-radiobuttonlist', 'Bp-formerrorstrings',
'Bp-forminfostrings',
 'Bp-kview', 'Bp-report', 'Bp-label', 'Bp-hot-
link', 'Bp-audit',
 'Bp-image', 'Bp-manageusers', 'Bp-emaildata',
'Bp-icon',
 'Bp-emailcompletelink', 'Bp-comment', 'Bp-com-
mentend', 'Bp-switch',
 'Bp-controlpicker', 'Bp-attachkview', 'Bp-
showattachkview',
 'Bp-arrayrownumber', 'Bp-sysvarform', 'Bp-

434 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

sysvartaskinstructions',
 'Bp-sysvarcurrentdate', 'Bp-sys-
varcurrentuser', 'Bp-sysvarstring',
 'Bp-sysvarcontrol', 'Bp-reauth', 'Bp-tooltip',
'Bp-activitylog',
 'Bp-captcha'
]
 },
 // These are the BP Logix control tool dropdown menus

{ name: 'bptoolbars', items: ['BPINPUT',
'BPOTHERINPUT', 'BPACTIONS',
 'BPOTHER', 'BPLAYOUT', 'BPRESPONSIVELAYOUT',
'BPARRAYS', 'BPATTACHMENTS',] },

//!!-
!!!!
];

In the CKEditor JavaScript, vertical divider lines between tools on the
same toolbar are created with'-', while creating a new toolbar line is
denoted with'/'. These conventions enable you to more easily organize
the toolbars, and distinguish between different types of tool on each tool-
bar.

Were you to place this configuration file in your installation as /custom/ui/cust_
ofd_config.js and reference it via the FormEditorConfig Custom Variable, it
would simply replicate the existing default configuration of the OFD toolbars. You
wouldn't see a change, since this configuration is exactly the same as the Process
Director default.
Using this configuration file, however, you could change the order in which tool-
bars and buttons appear, or remove them completely from displaying in your
installation.

You should ONLY edit the CKEditor tools (Basically, just the tools high-
lighted with the bright blue code options in the sample above), and not
the Process Director control tools, since that would disable them in your
installation. BP Logix recommends that you don't edit any of the sections
that are marked off by exclamation points at the start and end of the sec-
tion. Technically, you could edit these sections to alter the order in which

Developer's Reference Guide | 435

BP Logix Inc
Process Director Documentation

tools or menus appear in the user interface of the Online Form Designer,
but we strongly discourage it.

Customizing the Input Control Text Editor #
The default configuration for the Input control's Text Editor would look like this:

CKEDITOR.editorConfig = function (config) {
config.toolbar = [

{ name: 'document', items: ['Source', '-'] },
{ name: 'insert', items: ['Table', '-'] },
{ name: 'paragraph', items: ['NumberedList', 'Bul-

letedList', '-', 'JustifyLeft',
'JustifyCenter', 'JustifyRight', 'JustifyBlock'] },

 '/',
{ name: 'basicstyles', items: ['Bold', 'Italic',

'Underline', '-'] },
{ name: 'colors', items: ['TextColor', 'BGColor', '-']

},
{ name: 'styles', items: ['Format', 'Font',

'FontSize'] },
]
}

Again, the config.toolbar command specifies the available tools in the Text
Editor, and were you to place this file in your installation and reference it via the
sCkEditorCustomConfig Custom Variable, you'd see no change in the UI.
You could modify this file to add or remove tools or toolbars, just as you do the
OFD's configuration file. And, once again, you could simply use the Con-
fig.removeButtons command to remove unwanted buttons, Of course, since
this is already a fairly minimal set of editing tools, your most likely use case will be
to add tools to the existing ones, not remove the few that are there. To add new
tools, you'll need to modify the configuration file to add the desired tools in the
desired locations.

Adding Custom Fonts #
While the default fonts provided with CKEditor are probably adequate for must pur-
poses, your organization may wish to add custom fonts, for various reasons, such
as using a specific corporate font, or barcode fonts for barcode readers. In this sec-
tion, we'll refer to CKEditor generically, but the techniques we'll discuss apply
equally to the Online Form Designer or Input control Text Editor.

436 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Just as with customizing the toolbars for CKEditor, you'll need to add some new
lines to the JavaScript configuration file. We'll also need to use the sUseCSS Cus-
tom Variable in the custom variables file.
This font functionality is completely separate from the toolbar configuration. You
can customize just the fonts, customize both fonts and toolbars, or, of course, do
neither.
Adding the Fonts
Our first step is to supply the font (or fonts, in this case) we'll want to use for cus-
tomization. Let's say that we want to add a font named Nunito Sans and a barcode
font named LibreBarcode39 to Process Director. The first thing we need to do is
upload the TrueType font files for those fonts into the /custom/ui folder we've
already been using. In this example, we'll upload NunitoSans-Regular.ttf and
LibreBarcode39Text- Regular.ttf into the folder. These fonts will need to be
accessible on the server so they can be shown to users that don't have them
installed on their system.
We'll need to upload a custom CSS file (named "custom.css" in this example) into
the /custom/ui folder. This CSS file will have the contents shown below:

@font-face {
 font-family: "Nunito Sans";
 src: url(/custom/ui/NunitoSans-Regular.ttf);
}

@font-face {
 font-family: "Barcode";
 src: url(/custom/ui/LibreBarcode39Text-Regular.ttf);
}

.cke_editable {
 font: normal .9em "Nunito Sans";
}

.bpFormBody {
 font: normal .9em "Nunito Sans"!important;
}

.bpFormBody .gbleft {
 font-size: 17px;
}

This simple CSS does four things:

Developer's Reference Guide | 437

BP Logix Inc
Process Director Documentation

1. The two lines that start with the @font-face directive identify the two fonts
we're adding and their location, so that users who do not have them installed
can download them directly into their browser cache automatically, and see
them on the screen.

2. The .cke_editable class is the default text display class for CKEditor. This
CSS will override the default text style and replace it with Nunito Sans as the
new default font to use in CKEditor.

3. The .bpFormBody class is a built-in display class that sets the default font for
Form text when viewed in running Forms. By default, this font is set to Arial,
and we're going to override it with Nunito Sans. Because we're overriding the
BP Logix style sheet, we need to add the !Important directive to make this
work. If we don't add this class, all of our default text styling will show up as
Nunito Sans in CKEditor, but end users will see Arial as the default font when
they view the Forms. (Technically, we could skip this CSS class, but then, every
time we created a Form, we'd have to specifically style all our text using the
Font tool in CKEditor. Changing the default font is just...lots easier.)

4. Finally, the .bpFormBody .gbleft class will ensure that Form buttons, such
as the Button Area control that displays the Submit, Cancel, activity result but-
tons, etc., will display the button icons properly. We're changing the default
font on Forms, which will affect how Form buttons display, since Nunito Sans
has a different line height than the default Arial font. Setting the font size to
17px tweaks the spacing just enough to make button icons appear vertically
centered in Form buttons.
Our problem is that we can't just edit the .gbleft class by itself. It's a uni-
versal class that affects all buttons in Process Director. That includes buttons
that appear in the UI itself. We don't want to throw off the placement of but-
ton icons or images used in the main product UI.
All we want to do is ensure that buttons display icons properly on Forms. So,
we need to use the syntax .bpFormBody .gbleft, with a space between the
two classes. In CSS, this tells the browser that we only want to make this
change to the .gbleft class if it's displayed inside an element that's styled
with the .bpFormBody class. Since only the <body> element of a running
Form instance uses the .bpFormBody class, and Form buttons are always dis-
played inside the <body> element, this style will only affect Form buttons on
Running Forms. All of the other buttons used elsewhere in the product won't

438 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

be affected.
Also, we don't need to use the !important directive, since this syntax essen-
tially creates a unique class that automatically overwrites the default .gbleft
class on running Forms, due to it's position in the CSS hierarchy.

Process Director's CSS styling is very complex. You should be aware
that creating custom styles will be time-consuming, and will require con-
siderable knowledge of CSS to pull off correctly, without adversely affect-
ing the UI of the product itself.

Editing the Configuration file
Next we'll need to edit our custom configuration file(s) for CK editor. We need to
add two lines of configuration:

CKEDITOR.editorConfig = function (config) {
// New fonts to add to the system
config.contentsCss = "/custom/ui/custom.css";
config.font_names = 'Nunito Sans;Barcode;' + config.font_

names;

// All the toolbar config stuff we added previously,
// Which is completely separate from the font stuff.

config.toolbar = [
 ... // Code for Toolbar configuration
]
}

The config.contentsCss command let's CKEditor know that we want to apply
some custom CSS to CKEditor, and specifies the relative URL of our custom CSS file.
The config.font_names command adds our two new fonts to the list of fonts
that are already shown in CKEditor's Font tool. This particular syntax will add our
fonts to the top of the CKEditor Font tool's list of existing fonts, with all of the
standard fonts appearing below them in the Font tool.
Our final step is to add our custom CSS file to our existing installation's con-
figuration, as described in the Adding a Custom CSS Stylesheet section, above.

Developer's Reference Guide | 439

BP Logix Inc
Process Director Documentation

If you want the new fonts used as the default font for both the OFD
and the Input control, you'll need to add these lines to both configuration
files.

Once you've completed these steps, the two new fonts will be available for use in
CKEditor, and will display properly in Process Director for end users.
Here's how it looks in the OFD:

And here's how it looks in a running Form that uses the Input control's Text Editor:

440 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Environment Message Customization #
The Server Control page of the IT Admin area's Troubleshooting section enables
you to display an environmental message, e.g., "Staging Server" at the top of every
page displayed to user, in order to let them know what environment they're using.
This message can be styled in a custom CSS stylesheet, by setting the desired prop-
erties for the .bpCustomInfoText style. The most common customization would
be to change the background color of the message, using the style syntax:

.bpCustomInfoText {
 background-color: #FFE600;
}

For this style to appear to users, you must add a custom CSS stylesheet to Process
Director, as described above, if you do not already have one configured.

Developer's Reference Guide | 441

Server Control.htm

BP Logix Inc
Process Director Documentation

Using Web Services
This section provides a reference for calling or extending Web Services in Process
Director. Documentation for each web service is located in the Available Web Ser-
vices topic.
You'll need to enable the Web Services in BP Logix using the Properties page of the
IT Admin area's Installation Settings section. Ensure that Web Service Enabled is
set to "True". You can optionally require all Web Service calls to authenticate by set-
ting Require Web Service Authentication to "True". When this is set, you'll need to
call the Authenticate Web Service call prior to any other calls. You can optionally
set the Web Service Restrictions property to a list of comma separated IP
addresses that can call Web Services. If this field is set, only requests from these IP
Addresses will be allowed.
Web service calls can also be made via SQL Server database triggers. The following
query in SQL is an example of how to create a trigger that will make a web service
call in Process Director.

USE [DatabaseName]
 GO
 SET ANSI_NULLS ON
 GO
 SET QUOTED_IDENTIFIER ON
 GO
 ALTER TRIGGER [dbo].[Trigger_TableName]
 ON [dbo].[TableName]
 AFTER INSERT
 AS
 BEGIN
 SET NOCOUNT ON;
 DECLARE @vPointer INT
 EXEC sp_OACreate 'MSXML2.ServerXMLHTTP',
@vPointer OUTPUT
 EXEC sp_OAMethod @vPointer, 'open', NULL,
'GET', 'http://servername/
 /Services/wsWorkflow.asmx/Run?WFID=wfid'
 EXEC sp_OAMethod @vPointer, 'send'
 EXEC sp_OADestroy @vPointer
 END

For confirmation of the web services call, you can declare some additional fields if
you want and change the last few lines to:

442 | Developer's Reference Guide

Installation Settings Properties.htm

BP Logix Inc
Process Director Documentation

EXEC sp_OAMethod @vPointer, 'responseText'
EXEC sp_OAMethod @vPointer, 'Status', @vStatus OUTPUT
EXEC sp_OAMethod @vPointer, 'StatusText', @vStatusText OUTPUT
EXEC sp_OADestroy @vPointer
SELECT @vStatus AS Status, @vStatusText AS StatusText,
 @vResponseText AS Response

REST Services #
Microsoft natively provides a non-SOAP (REST) interface to some web services, if
the service requires no parameters, or only parameters of the primitive types bool,
int, or string. To check to see if a particular web service supports a REST interface,
you can navigate to the service page for a web service, e.g., the "ser-
vices/wsForm.asmx" page, and click on one of the web service calls. If the web ser-
vice call provides an "HTTP GET" operation, then it can use a REST call to run the
service. This isn't a feature that is managed or edited by BP Logix; it is a native
feature of web services that has been implemented by Microsoft, and is subject
to change at their discretion.

You can call these services via with the standard HTTP GET protocol (using a simple
URL). A custom variable, fWebServiceAllowCredentialsURL is set to "true" as a
default, to allow credentials to be passed on the URL.
REST URLs should be in the following format:

http://RESTSer-
viceURL?parameterName=parameterValue&otherParam=otherValue

The “bpUserId” and “bpPassword” parameters are necessary to authenticate with
Process Director when using REST APIs. The credentials you pass can be for any
user that has permission to invoke a Web Service, irrespective of whether that user
is a System Administrator.

Developer's Reference Guide | 443

BP Logix Inc
Process Director Documentation

Be advised that using the bpUSERID or bpPassword parameter
requires sending the User ID and Password in clear text, so be mindful of
the security implications of transmitting these values and limit the calls
to the localhost. Secure the rest calls using the IP address white list in
the installation settings.

Other REST Services
In addition to the built-in REST services in Process Director, implementers can also
use Business Values to retrieve and use REST data in any desired context. Addi-
tionally, two Web Service Custom Tasks to retrieve REST data from any accessible
REST web service to Fill Fields or Fill Dropdowns with REST data.
For more information about accessing and using external REST services, please
refer to the REST Services topic.

Web Service Authentication Settings #
A web service call can be made without requiring authentication if the web service
is being called from a source that is listed as a “Local IP Address” in the installation
settings in Process Director.
If an IP address is listed in the “Web Service Restrictions” than web service calls
can only be made from those IP addresses.

444 | Developer's Reference Guide

Business Values.htm
Web Services Custom Tasks.htm#FillFieldsFromREST
Web Services Custom Tasks.htm#FillDDFromREST

BP Logix Inc
Process Director Documentation

Extending BP Logix Web Services #
You can also write new or extend the web services provided by BP Logix by devel-
oping your own custom .ASMX pages in the custom folder. Your new Web Service,
for example, can be a “proxy” to a remote web service that takes a parameter list
that the Web Service Custom Tasks support. Or you can provide Web Services that
search for and return custom data.

Developer's Reference Guide | 445

BP Logix Inc
Process Director Documentation

See the sample in the /custom/samples/SampleService.asmx.sample file. Notice
that the Web Service is derived from the bpWebService class. This enables you to
call any BP Logix SDK API from the new Web Service.
To extend BP Logix Web Services inside Visual Studio, use the fully functional Visual
Studio project installed with the product named bpVS.zip. Refer to the sample file
SampleService.asmx.

Calling Other Web Services #
The easiest way to call Web Services provided by other Enterprise Applications is to
use the Web Service Custom Task. This Custom Task enables you to call a remote
Web Service without writing any code. You can map the inputs and outputs of the
Web Service call to Form Fields, system variables, or custom variables.
Additionally, you can use any .NET language to call other Web Services. To do this,
use the .NET WSDL compiler to generate the proxy code for the Web Service. Then
package the proxy into a .DLL and place it into the /Bin folder of the BP Logix
application. Your custom Form, Workflow, or Knowledge View scripts can then call
these Web Services.

Available Web Services
There are many APIs that can be called from any platform that supports Web Ser-
vices. The BP Logix Web Services are divided into functional areas, providing sep-
arate WSDLs for each area.
The table below briefly describes the Web Service areas. The name of each web
service is linked to the topic page containing the documentation for all of the Web
Service calls available for that web service.

WEB
SERVICE

DESCRIPTIO-
N

DOCUMENTATION URL / WSDL URL

wsAdmin Services to
retrieve
admin-
istrative
information,
authenticate,

http://<servername>/Services/wsAdmin.asmx
http://<servername>/Services/ wsAd-
min.asmx?WSDL

446 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

WEB
SERVICE

DESCRIPTIO-
N

DOCUMENTATION URL / WSDL URL

and set con-
text.

wsCase Services to
manipulate
Case
instances
and data.

http://<servername>/Services/wsCase.asmx
http://<servername>/Services/ wsCase.as-
mx?WSDL

wsContent Services to
manipulate
content
items (get,
delete, get/-
set cat-
egories and
meta data,
etc), in the
BP Logix
repository.

http://<servername>/Services/wsContent.asmx
http://<server-
name>/Services/wsContent.asmx?WSDL

wsForm Services to
manipulate
Forms includ-
ing getting
and setting
form data.

http://<servername>/Services/wsForm.asmx
http://<server-
name>/Services/wsForm.asmx?WSDL

wsGroup Services to
iterate and
manipulate
groups.

http://<servername>/Services/wsGroup.asmx
http://<server-
name>/Services/wsGroup.asmx?WSDL

wsReport Services to
run a report

http://<servername>/Services/wsReport.asmx
http://<server-
name>/Services/wsReport.asmx?WSDL

Developer's Reference Guide | 447

BP Logix Inc
Process Director Documentation

WEB
SERVICE

DESCRIPTIO-
N

DOCUMENTATION URL / WSDL URL

wsRule Services to
manipulate
Business
Rules

http://<servername>/Services/wsRule.asmx
http://<server-
name>/Services/wsRule.asmx?WSDL

wsTimeline Services to
query, start,
and manip-
ulate Pro-
cess
Timelines.

http://<server-
name>/Services/wsTimeline.asmx
http://<server-
name>/Services/wsTimeline.asmx?WSDL

wsUser Services to
iterate and
manipulate
users.

http://<servername>/Services/wsUser.asmx
http://<server-
name>/Services/wsUser.asmx?WSDL

wsUtil Utility Ser-
vices such as
version
query and a
user authen-
ticate.

http://<servername>/Services/wsUtil.asmx
http://<server-
name>/Services/wsUtil.asmx?WSDL

wsWork-
flow

Services to
query, start,
and manip-
ulate Work-
flows.

http://<server-
name>/Services/wsWorkflow.asmx
http://<server-
name>/Services/wsWorkflow.asmx?WSDL

Where <servername> is the host where the product is installed.
Your specific development environment will have documentation to process a
WSDL files and calling web services.
Windows Communication Foundation (WCF) can also be used to call any web ser-
vice in Process Director. All Process Director web services have a Web Services

448 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Description Language (WSDL) interface, and any WCF client can consume the web
service. Using WCF also allows you to call web services asynchronously.

Service Handle Method #
For Process Director v6.1.300, The ServiceHandle method for web services was
added to the SDK, under the BPLogix.WorkflowDirector.SDK namespace, to
enable the creation of custom web services.
This method can be called to perform some complex functions, such as exporting
users from an on-premise Active Directory system to a Cloud installation of Process
Director. The method can be called with the declaration synatax:

public ServiceHandle(bpWebServiceInternal pService,
 string pAPI,
string method,
 string sourceFile,
 int line,
params object[] pParams)

Most of the parameters are not enforced if they use the sub-method Ser-
viceHandle.Create instead of creating the ServiceHandle object manually.
This method is normally implemented as a web service via a custom ASCX control.

wsAdmin
The following methods are available in the wsAdmin service.

Authenticate
This method will authenticate web service requests. Call this method prior to other
web service calls. It will automatically populate the SOAP header with a validation
token that enables subsequent web service calls.
Input Parameters
User: The built-in or Windows UserID to use for the context of all calls.
Password: The password for this UserID.
Returns
Boolean: Indication of success.

AuthenticateJSON
This method will authenticate web service requests. Call this method prior to other
web service calls. The return is a JSON string with the session ID.

Developer's Reference Guide | 449

BP Logix Inc
Process Director Documentation

Input parameters
User: The built-in or Windows UserID to use for the context of all calls.
Password: The password for this UserID.
Returns
JSON: The Session ID.

GetDatabaseInfo
This method will return various information about Process Director's database.
Input Parameters
Information: The specific information that should be returned. This parameter will
accept any of the following values:

l getMaxDBSize
l getMaxSizeNoLog
l getDBSize
l getLogSize
l getDBSizeNoLog
l getMaxLogSize
l getFreeSpace

Returns
Size: Size of the database in megabytes

GetDisabledUsers
This method will get the number of disabled users in Process Director's database.
Input Parameters
None.
Returns
disabledUsers: The number of disabled users in the database.

GetDiskInfo
This method will return info on all local drives.
Input Parameters
None.
Returns
allDrives: The Drive Information for each local drive.

450 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

GetLoggedInUsers
This method will get the number of users currently logged in to Process Director.
Input Parameters
None.
Returns
loggedIn: The number of users logged in.

GetMaximumUsers
This method will get the maximum possible number of users for Process Director's
license.
Input Parameters
None.
Returns
possibleUsers: The number of possible users.

GetObjectsByType
This method will get the number of specific types of objects in Process Director's
database.
Input Parameters
type: The type of object to be returned. This parameter accepts one of the fol-
lowing:

l Workflow
l timeline
l Form
l folder
l document

Returns
objects: number of objects in the database.

GetServerInfo
This method will return information about the server.

Developer's Reference Guide | 451

BP Logix Inc
Process Director Documentation

Input Parameters
Information: The specific server information to be returned by the web service.
The parameter will accept one of the following:

l CurrentMemory
l PeakVirtual
l CurrentVirtual
l PeakMemory
l ProcdessorTime
l StartTime
l PDVersion

Returns
ServerInfo: Requested information about the server as specified in the input para-
meter.

GetTotalActiveUsers
This method will return the number of active users in Process Director's database.
Input parameters
None.
Returns
activeUsers: number of active users in the database.

GetTotalGroups
This method will get the total number of groups in Process Director's database.
Input parameters
None.
Returns
groups: The number of groups in the database.

GetTotalObjects
This method will get the number of objects in Process Director's database.
Input parameters
None.
Returns
objects: number of objects in the database.

452 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

GetTotalUsers
This method will get the total number of users in Process Director's database.
Input parameters
None.
Returns
Users: The number of users in the database.

SendMessageToAll
This method will send a message to all users on a server.
Input parameters
message: The message to be sent to all users.
Returns
success: A Boolean value reflecting success of web services (FALSE if errors, TRUE
if successful).

SetContextUID
This method will set the context UID for all future web service calls. For instance,
this UID will be used as the current user for running Knowledge Views, permission
checking, etc.
Input parameters
UID: The ID of the user to use for the context of all calls.
Returns
Boolean:indication of success.

wsCase
The following methods are available in the wsAdmin service. This service is avail-
able to users of Process Director v4.02 or higher.

Authenticate
This method will authenticate web service requests. Call this method prior to other
web service calls. It will automatically populate the SOAP header with a validation
token that enables subsequent web service calls.
Input parameters
User: The built-in or Windows UserID to use for the context of all calls.

Developer's Reference Guide | 453

BP Logix Inc
Process Director Documentation

Password: The password for this UserID.
Returns
Boolean: The indication of success.

AuthenticateJSON
This method will authenticate web service requests. Call this method prior to other
web service calls. The return is a JSON string with the session ID.
Input parameters
User: The built-in or Windows UserID to use for the context of all calls.
Password: The password for this UserID.
Returns
JSON: The Session ID.

CreateCase
This method will create a new case instance and pass in initial case property val-
ues.
Input Parameters
PID: The type of object to be returned.
PathName: The full path of the case definition or a CASEID.
CaseValues: The list of name/value pairs representing the case properties and
their values to be set, passed as a List<NameValue> object.
Returns
The Case instance of the newly instantiated case, or null if there is an error.

CreateSimpleCase
This method will create a new case instance. Initial case property values can be
passed in through the query string.
Input Parameters
PID: The type of object to be returned.
PathName: The full path of the case definition or a CASEID.
Returns
The Case instance of the newly instantiated case, or null if there is an error.

GetCaseByCASEINSTID

454 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

This method will return a Case instance from it's Case Instance ID.
Input Parameters
CASEINSTID: The ID of the Case Instance
Returns
The specified Case Instance, or null if not found.

GetCaseData
This method will return a list of all the properties in a case instance and their asso-
ciated values.
Input Parameters
CASEINSTID: The ID of the case instance.
Returns
A List<NameValue> object containing a list of the case properties and their values.

GetCaseProperties
This method will return a list of the properties associated with a case definition.
Input Parameters
CASEID: The ID of the case Definition.
Returns
A List<NameValue> object containing a list of the case properties and their types.

Instantiate
This method will create a new case instance.
Input Parameters
CASEID: The ID of the case definition to instantiate
Returns
The Case instance of the newly instantiated case.

SetCaseData
This method will set the value of all specified properties in a case instance.
Input Parameters
CASEINSTID: The ID of the case instance.
CaseData: A list of the name/value pairs containing the names of the properties
and their respective values, passed as a List<NameValue> object.

Developer's Reference Guide | 455

BP Logix Inc
Process Director Documentation

Returns
Boolean: True if the operation succeeds.

SetCaseProperty
This method will set the value of a specified property for a case instance.
Input Parameters
CASEINSTID: The ID of the case instance.
PropertyName: The name of the property whose value will be set.
Value:The value to which the property will be set.
Returns
Boolean: True if the operation succeeds.

SetContextUID
This method will set the context UID for all future web service calls. For instance,
this UID will be used as the current user for running Knowledge Views, permission
checking, etc.
Input Parameters
UID: The ID of the user to use for the context of all calls
Returns
Boolean: True if the operation succeeds.

wsContent
These web services allow you to manipulate Process Director content objects pro-
grammatically.

AppendPath
This method will create all subfolders under the indicated folder by the path to
append.
Input parameters
pFID: The ID of the Folder.
pPath: The path to append underneath the folder.
Returns
Folder: The new folder corresponding to the path we appended.

AttributeExists

456 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

This method returns a boolean value after determining whether a specified Meta
Data Attribute exists. If the Attribute exists, the service will return "true".
Input parameters
PID: The Partition ID or Name containing the folder.
CategoryName: The name of the category to evaluate.
Returns
Boolean:Whether the Attribute exists.

Authenticate
This method will authenticate web service requests. Call this method prior to other
web service calls. It will automatically populate the SOAP header with a validation
token that enables subsequent web service calls.
Input parameters
User: The built-in or Windows UserID to use for the context of all calls.
Password: The password for this UserID.
Returns
Boolean: The indication of success.

AuthenticateJSON
This method will authenticate web service requests. Call this method prior to other
web service calls. The return is a JSON string with the session ID.
Input parameters
User: The built-in or Windows UserID to use for the context of all calls.
Password: The password for this UserID.
Returns
JSON: The Session ID.

CategoryExists
This method returns a boolean value after determining whether a specified Meta
Data Category exists. If the Attribute exists, the service will return "true".
Input parameters
PID: The Partition ID or Name containing the folder.
AttributePath: The name of the category to evaluate.

Developer's Reference Guide | 457

BP Logix Inc
Process Director Documentation

Returns
Boolean:Whether the Category exists.

CreateNewFolder
This method will create all subfolders under the indicated folder by the path to
append.
Input parameters
pFID: The ID of the Folder
pPath: The path to append underneath the folder.
Returns
Folder: The new folder corresponding to the path you appended.

CreatePath
This method will create a path including all subfolders under the indicated par-
tition.
Input parameters
pPID: The ID of the Partition.
pPath: The path to create in the Partition.
Returns
Folder: The new folder corresponding to the path you created.

DeleteObject
This method deletes an object from the content repository.
Input parameters
ID: The ID of the object.
Returns
None.

DeleteObjectAndChildren
This method deletes an object and ALL children and sub-Workflows (if this is a pro-
cess instance) from the content repository.
Input parameters
ID: The ID of the object.

458 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Returns
None.

GetAttribute
This method will get an object's attribute value.
Input Parameters
ID: The ID of the object.
Category: The name of the category.
Attribute: The name of the attribute.
Returns
The attribute value

GetFolderByID
This method will get a folder by its ID.
Input Parameters
ID: The ID of the Folder.
Returns
Folder: The actual folder or null if not found.

GetFolderByPathName
This method will get a folder from its path in the repository.
Input parameters
PID: The Partition ID or Name containing the folder.
PathName: The full path of the folder (e.g. /My Documents/sales/).
Returns
Folder: The actual folder or null if not found.

GetObjectByID
This method will get an object from its ID.
Input parameters
ID: The ID of the object.
Returns
ContentObject: The actual object or null if not found.

Developer's Reference Guide | 459

BP Logix Inc
Process Director Documentation

GetObjectByPathName
This method will get an object from its path in the repository.
Input parameters
PID: The Partition ID or Name containing the object.
PathName: The full path of the object (e.g. /My Documents/Document.doc).
Returns
ContentObject: The actual object or null if not found.

GetObjectsFromParentID
This method will return all objects that are children of the object at the specified
path.
Input parameters
PID: The Partition ID or Name containing the object.
Path: The full path of the object (e.g. /My Documents/Document.doc).
Returns
List: A list containing the children of the parent object.

GetObjectsFromParent
This method will return all objects that are children of the object at the specified
path.
Input parameters
PID: The Partition ID or Name containing the object.
Path: The full path of the object (e.g. /My Documents/Document.doc).
Returns
List: A list containing the children of the parent object.

GetPartitions
This method will return all objects that are children of the object at the specified
path.
Input parameters
None
Returns
List: A list containing the Partition attributes.

460 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

GetRootFolder
This method will get the root folder object for a partition.
Input parameters
PID: The Partition ID or Name to find
Returns
FolderObject: The actual root object or null if not found.

ImportXML
This method imports an XML package into the Content List.
Input parameters
PID: The Partition ID where the import will occur
ParentFolderID: The ID parent object for the import
XMLData: The bytes of the XML document to import
Returns
RetMsg: The list of output strings after the import

MoveObject
This method moves a content object.
Input parameters
ID: The ID of the object to be moved.
DestinationID: The object under which the item identified by the ID will be moved.
Returns
None.

RunKView
This runs a Knowledge View and returns the results.
Input parameters
KVID: The Knowledge View ID to run.
Filter: The optional list of filter data.
StartFID: The optional Folder ID to start.
StartCATID: The optional Category ID to start.
Returns
Output: The list of output rows.

Developer's Reference Guide | 461

BP Logix Inc
Process Director Documentation

SetAttribute
This method will set an object's attribute value (and indirectly its category).
Input parameters
ID: The ID of the object.
Category: The name of the category.
Attribute: The name of the attribute.
Value: The value to set.
Returns
None.

SetAttributes
This method will set an object's attribute values (and indirectly its category).
Input parameters
ID: The ID of the object.
Attributes: The List of attribute names and values.
Returns
None.

SetContextUID
This method will set the context UID for all future web service calls. For instance,
this UID will be used as the current user for running Knowledge Views, permission
checking, etc.
Input parameters
UID: The ID of the user to use for the context of all calls.
Returns
Boolean: The indication of success.

SetExternalAttribute
This method will set an object's attribute based on its external attribute.
Input parameters
ID: The ID of the object.
Name: The name of the external attribute.
Value: The value to set.

462 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Returns
None.

SetExternalAttributes
This method will set an object's attributes based on its external attribute.
Input parameters
ID: The ID of the object
Attributes: The List of External attribute names and values
Returns
None.

SetGroupName
This method will set an object's Group Name property.
Input parameters
ObjectID: The ID of the object
ParentID: The ID of the object's parent object
GroupName: Group name to be assigned
Returns
None.

SetMetaData
This method will get an object's meta data and optionally attribute values.
Input parameters
ID: The ID of the object
XML_Data: The XML string representing the Category and Attribute values to set
Returns
None.

wsForm
These web services enable you to manipulate Process Director forms pro-
grammatically.

Authenticate

Developer's Reference Guide | 463

BP Logix Inc
Process Director Documentation

This method will authenticate web service requests. Call this method prior to other
web service calls. It will automatically populate the SOAP header with a validation
token that enables subsequent web service calls.
Input Parameters
User: The built-in or Windows UserID to use for the context of all calls.
Password: The password for this UserID.
Returns
Boolean: True of the operation succeeds.

AuthenticateJSON
This method will authenticate web service requests. Call this method prior to other
web service calls. The return is a JSON string with the session ID.
Input parameters
User: The built-in or Windows UserID to use for the context of all calls.
Password: The password for this UserID.
Returns
JSON: The Session ID.

CreateForm
This method will create a new form instance and pass in initial form values.
Input Parameters
PID: The Partition ID or Name.
PathName: The full path of the form definition (e.g. /Forms/My Form) or a
FORMID.
FormValues: The list of name/value pairs to set in the new form instance.
SkipDefaultValues: Set to true to skip merging default form values the first time
the form is viewed.
Returns
FormInstance: The new form instance or null if an error prevents execution of the
operation.

CreateFormEx
This method will create a new form instance and pass in initial form values. Unlike
CreateForm, CreateFormEx allows you to pass in the name of the new form

464 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

instance manually.
Input Parameters
PID: The Partition ID or Name.
PathName: The full path of the form definition (e.g. /Forms/My Form) or a
FORMID.
FormValues: The list of name/value pairs to set in the new form instance.
SkipDefaultValues: Set to true to skip merging default form values the first time
the form is viewed.
FormInstanceName: Optionally used to set new form instance name.
Returns
FormInstance: The new form instance or null if an error prevents execution of the
operation.

CreateFormEx2
This method will create a new form instance and pass in initial form values, and will
include both the Value and Display Text for dropdown fields. CreateFormEx2 has
the same options as CreateFormEx, but instead of taking a List<NameValue> para-
meter to set the form field values, it takes a List<NameTextValue> parameter. The
NameValue type only allows you to set a name, value, and number (which is simply
a numerical representation of the field's value). The NameTextValue also allows
you to set a Text property, which can be distinct from the Value property. This is
particularly useful when setting dropdowns, where the text of a dropdown selec-
tion and its value are often different.
Input Parameters
PID: The Partition ID or Name.
PathName: The full path of the form definition (e.g. /Forms/My Form) or a
FORMID.
FormValues: The list of name/value pairs to set in the new form instance.
SkipDefaultValues: Set to true to skip merging default form values the first time
the form is viewed.
FormInstanceName: Optionally used to set new form instance name.

Developer's Reference Guide | 465

BP Logix Inc
Process Director Documentation

Returns
FormInstance: The new form instance or null if an error prevents execution of the
operation.

CreateSimpleForm
This method will create a new form instance. Initial form values can be passed on
the query string, which enables you to create a form and populate form fields.
Form fields are identified using a URL parameter with the prefix "EXT_ ". For
instance, a Field called "FirstName" on the Form can be populated via URL Para-
meter as "EXT_FirstName=Bob". This would result in the following URL:

http://server-
name.com/services/wsform.asmx/CreateSimpleForm?PID=ID&
 PathName=Path&SkipDefaultValues=false&EXT_FirstName=Bob

Input Parameters
PID: The Partition ID or Name.
PathName: The full path of the form definition (e.g. /Forms/My Form) or a
FORMID.
SkipDefaultValues: Set to true to skip merging default form values the first time
the form is viewed.
EXT_SomeFieldName: A form field you wish to populate with a value when the
Form is created.
Returns
FormInstance: The new form instance or null if an error prevents execution of the
operation.

GetFormByFORMINSTID
This method will get a form instance from its FORMINSTID.
Input Parameters
FORMINSTID: The ID of the Form Instance.
Returns
FormInstance: The actual form instance or null if not found.

GetFormData
This method will get all form data from a form instance.

466 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Input Parameters
FORMINSTID: The ID of the Form Instance.
Returns
List: The list of name/value pairs in this form instance.

GetFormDataEx
This method will get all form data from a form instance, and will include both the
Value and Display Text for dropdown fields.
Input Parameters
FORMINSTID: The ID of the Form Instance.
Returns
List: The list of name/value pairs in this form instance.

GetFormSchema
This method will return the form schema for all form controls.
Input Parameters
FORMID: The ID of the Form Definition.
Returns
List: The list of form fields and their types.

GetFormSchemaEx
This method will return the form schema for all form controls, and will include both
the Value and Display Text for dropdown fields.
Input Parameters
FORMID: The ID of the Form Definition.
Returns
List: The list of form fields and their types.

Instantiate
This method will instantiate a new form instance.
Input Parameters
FORMID: The ID of the Form to create.
SkipDefaultValues: Set to true to skip merging default form values the first time
the form is viewed.

Developer's Reference Guide | 467

BP Logix Inc
Process Director Documentation

Returns
FormInstance: The new form instance or null if an error prevents execution of the
operation.

RecalcFormInstanceName
This method will force the form instance name to be recalculated.
Input Parameters
FORMINSTID: The ID of the Form Instance.
Returns
Boolean: True if the operation succeeds.

SearchForms
This method will search form instances for values.
Input Parameters
PID: The Partition ID or Name.
FORMID: Optional FORM ID to limit search.
ControlName: The name of the form control to search.
Value: The value to search for.
Returns
SearchResult: An array of search results that match the search criteria. The array
contains the following values for each form that is returned in the array.

l PID
l FORMID
l FORMINSTID
l FCID

SetContextUID
This method will set the context UID for all future web service calls. For instance,
this UID will be used as the current user for running Knowledge Views, permission
checking, etc.
Input Parameters
UID: The ID of the user to use for the context of all calls.

468 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Returns
Boolean: The indication of success.

SetFormData
This method will set form data for a form instance.
Input Parameters
FORMINSTID: The ID of the Form Instance.
FormValues: The list of name/value pairs to set in this form instance.
Returns
Boolean: True if the operation succeeds.

SetFormDataEx
This method will set form data for a form instance, and will include both the Value
and Display Text for dropdown fields.
Input Parameters
FORMINSTID: The ID of the Form Instance.
FormValues: The list of name/value pairs to set in this form instance.
Returns
Boolean: True if the operation succeeds.

SetFormDataField
This method will set form data for a single form field for a form instance.
Input Parameters
FORMINSTID: The ID of the Form Instance.
FieldName: The form field name to set.
FieldName: The value of the form field.
Returns
Boolean: True if the operation succeeds.

wsGroup
These web services enable you to manipulate Process Director user groups pro-
grammatically.

AddGroupToWorkspace
This method will add a Group to a specified Workspace.

Developer's Reference Guide | 469

BP Logix Inc
Process Director Documentation

Input Parameters
GID: The Group ID of the Group to add.
PROFILEID: The ProfileID of the Workspace to which to add the user.
Returns
Boolean: True if the operation succeeds.

Authenticate
This method will authenticate web service requests. Call this method prior to other
web service calls. It will automatically populate the SOAP header with a validation
token that enables subsequent web service calls.
Input Parameters
User: The built-in or Windows UserID to use for the context of all calls.
Password: The password for this UserID.
Returns
Boolean: True if the operation succeeds.

AuthenticateJSON
This method will authenticate web service requests. Call this method prior to other
web service calls. The return is a JSON string with the session ID.
Input parameters
User: The built-in or Windows UserID to use for the context of all calls.
Password: The password for this UserID.
Returns
JSON: The Session ID.

CreateGroup
This method will create a group.
Input parameters
GroupName: The Group Name to add.
Returns
Group: The new group object that was created, or null if an error prevents exe-
cution of the operation.

DeleteGroup

470 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

This method will delete a group.
Input parameters
GID: The GID of the group to delete
Returns
Boolean: True if the operation succeeds.

EnumerateUserGroups
This method returns a list of all groups in the system.
Input parameters
None
Returns
String: Comma-separated list of groups.

GetGroupByID
This method will get a Group from its ID.
Input parameters
GID: The ID of the group to retrieve.
Returns
Group: The actual Group or null if the Group isn't found.

GetGroupByName
This method will get a Group from its Name.
GroupName: The name of the group to retrieve.
Returns
Group: The actual Group or null if the Group isn't found.

GetUsers
This method will get a list of users assigned to a Group.
Input parameters
GID: The ID of the group to retrieve.
Return
User: An array containing all of the users assigned to the group. For each user, the
array will contain the following values:

Developer's Reference Guide | 471

BP Logix Inc
Process Director Documentation

l UID
l AuthType
l UserName
l UserID
l Email
l AvgLoginSecs
l Groups: An array containing all of the groups of which the user is a member

o Group

n GID
n GroupName

RemoveFromGroupWorkspace
This method will remove a Group from a specified Workspace.
Input Parameters
GID: The Group ID of the Group to remove.
PROFILEID: The ProfileID of the Workspace from which to remove the Group.
Returns
Boolean: True if the operation succeeds.

SetContextUID
This method will set the context UID for all future web service calls. For instance,
this UID will be used as the current user for running Knowledge Views, permission
checking, etc.
Input parameters
UID: The ID of the user to use for the context of all calls
Returns
Boolean: True if the operation succeeds.

wsReport
These web services enable you to manipulate Process Director reports pro-
grammatically.

Authenticate

472 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

This method will authenticate web service requests. Call this method prior to other
web service calls. It will automatically populate the SOAP header with a validation
token that enables subsequent web service calls.
Input Parameters
User: The built-in or Windows UserID to use for the context of all calls.
Password: The password for this UserID.
Returns
Boolean: True if the operation succeeds.

AuthenticateJSON
This method will authenticate web service requests. Call this method prior to other
web service calls. The return is a JSON string with the session ID.
Input parameters
User: The built-in or Windows UserID to use for the context of all calls.
Password: The password for this UserID.
Returns
JSON: The Session ID.

ExportReport
This method will export a report to the local file system or into the Content List.
Input Parameters
RID: The Report ID of the report to export.
ExportName: The file name to export with extention (PDF, DOCX, XLSX, PPTX, etc.).
ContentParentID: The ID of the parent in the Content List to save the exported
file.
ContentFolderPath: The full folder path in the Content List to save the exported
file.
LocalFolderPath: The path to the folder in the local file system to save the expor-
ted file.
Returns
Boolean: True if the operation succeeds.

ExportReportEx
This method will export a report to the local file system or into the Content List.

Developer's Reference Guide | 473

BP Logix Inc
Process Director Documentation

Input Parameters
RID: The Report ID to export.
ExportName: The file name to export with extention (PDF, DOCX, XLSX, PPTX, etc.).
ContentParentID: The ID of the parent in the Content List to save the exported
file.
ContentFolderPath: The full folder path in the Content List to save the exported
file.
LocalFolderPath: The path to the folder in the local file system to save the expor-
ted file.
Variables: The list of variables to pass to the report.
Returns
Boolean: True if the operation succeeds.

GetReportByRID
This method will get a report definition from its RID.
Input Parameters
RID: The ID of the Report Definition
Returns
ReportDefinition: The actual report definition or null if the report isn't found.

SetContextUID
This method will set the context UID for all future web service calls. For instance,
this UID will be used as the current user for running Knowledge Views, permission
checking, etc.
Input Parameters
UID: The ID of the user to use for the context of all calls
Returns
Boolean: True if the operation succeeds.

wsRule
These web services enable you to manipulate Process Director Business Rules pro-
grammatically.

Authenticate

474 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

This method will authenticate web service requests. Call this method prior to other
web service calls. It will automatically populate the SOAP header with a validation
token that enables subsequent web service calls.
Input Parameters
User: The built-in or Windows UserID to use for the context of all calls.
Password: The password for this UserID.
Returns
Boolean: True if the operation succeeds.

AuthenticateJSON
This method will authenticate web service requests. Call this method prior to other
web service calls. The return is a JSON string with the session ID.
Input parameters
User: The built-in or Windows UserID to use for the context of all calls.
Password: The password for this UserID.
Returns
JSON: The Session ID.

Evaluate
This method will evaluate a rule.
Input Parameters
RULEID: The ID of the Rule Definition.
Context: Optional context passed to rule.
Variables: Optional list of variables passed to rule.
Returns
The result of the rule evaluation.

GetRuleByRULEID
This method will get a rule definition from its RULEID.
Input Parameters
RULEID: The ID of the Rule Definition.
Returns
RuleDefinition: The actual rule definition or null if not found.

Developer's Reference Guide | 475

BP Logix Inc
Process Director Documentation

SetContextUID
This method will set the context UID for all future web service calls. For instance,
this UID will be used as the current user for running Knowledge Views, permission
checking, etc.
Input Parameters
UID: The ID of the user to use for the context of all calls.
Returns
Boolean: True if the operation succeeds.

wsTimeline
These web services enable you to manipulate Process Timelines programmatically.

AddToTimeline
This method will add an object to a timeline instance.
Input Parameters
TLINSTID: The ID of the Timeline Instance.
ID: The ID of the object to add.
Type: ObjectType - The type of object to add.
Group: The optional group name to add the object into.
Returns
TimelineInstance: The timeline instance in which the call ran (or null if an error
occurred).

AddUsersToActivity
This method will add user(s) to a specific Timeline instance.
Input Parameters
ACTINSTID: The Timeline Activity Instance ID
UID: Comma separated list of UIDs to add
Returns
Boolean: True if the operation succeeds.

Authenticate
This method will authenticate web service requests. Call this method prior to other
web service calls. It will automatically populate the SOAP header with a validation

476 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

token that enables subsequent web service calls.
Input Parameters
User: The built-in or Windows UserID to use for the context of all calls.
Password: The password for this UserID.
Returns
Boolean: True if the operation succeeds.

AuthenticateJSON
This method will authenticate web service requests. Call this method prior to other
web service calls. The return is a JSON string with the session ID.
Input parameters
User: The built-in or Windows UserID to use for the context of all calls.
Password: The password for this UserID.
Returns
JSON: The Session ID.

Cancel
This method will cancel a running Timeline instance.
Input Parameters
TLINSTID: The ID of the TimelineInstance
Returns
TimelineInstance: The actual Timeline instance that was canceled, or Null if not
found.

GetActivityByACTID
This method will return a Timeline Activity for a specific Timeline instance.
Input Parameters
TLINSTID: The Timeline Instance ID.
ACTID: The Timeline Activity ID to retrieve.
Returns
TimelineActivity: The parent Timeline Activity for the timeline instance passed to
the service (or null if an error occurred).

GetActivityByName

Developer's Reference Guide | 477

BP Logix Inc
Process Director Documentation

This method will return a Timeline Activity for a specific Timeline instance.
Input Parameters
TLINSTID: The Timeline Instance ID.
ActName: The Timeline Activity name to retrieve.
Returns
TimelineActivity: The parent Timeline Activity for the timeline instance passed to
the service (or null if an error occurred).

GetTimelineByTLID
This method will get a Timeline definition from its TLID.
Input Parameters
TLID: The ID of the Timeline Definition.
Returns
TimelineDefinition: The actual Timeline definition or null if the timeline isn't
found.

GetTimelineByTLINSTID
This method will get a timeline instance from its TLINSTID.
Input Parameters
TLINSTID: The ID of the Timeline Instance.
Returns
TimelineDefinition: The actual Timeline definition or null if the timeline isn't
found.

Instantiate
This method will instantiate a Timeline Instance from a TLID.
Input Parameters
TLID: The ID of the Timeline Definition to instantiate.
InitiatorUID: The optional UID of the Timeline initiator.
Returns
TimelineInstance: The actual Timeline instance or null if the timeline isn't found.

PostEvent
This method will post an event to a timeline that is waiting on a Wait activity.

478 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Input Parameters
TLINSTID: The optional ID of the Timeline Instance to POST
EventName: The optional Event Name to post.
Returns
Boolean: True if the operation succeeds.

RemoveUsersFromActivity
This method will remove user(s) from a specific activity instance.
Input Parameters
ACTINSTID: The Timeline Activity Instance ID.
UID: Comma separated list of UIDs to add.
Returns
Boolean: True if the operation succeeds.

Restart
This method will restart an existing Timeline instance TLINSTID at an optional activ-
ity ACTID.
Input Parameters
TLINSTID: The ID of the Timeline Instance to restart.
ACTID: The ACTIVITY ID of the ACTIVITY in the Timeline definition to restart
(optional).
Returns
TimelineInstance: The Timeline instance which the call restarted (or null if an
error occurred).

Run
This method will instantiate and run a Timeline Instance from a TLID.
Input Parameters
TLID: The ID of the Timeline Definition to run.
Returns
TimelineInstance: The Timeline instance which the call ran (or null if an error
occurred).

RunTimeline

Developer's Reference Guide | 479

BP Logix Inc
Process Director Documentation

This method will create and run a new Timeline instance and optionally add a
Timeline object.
Input Parameters
PID: The Partition ID or Name.
PathName: The full path of the Timeline definition (e.g. /Process/My Timeline).
ID: The ID of the object to add.
Type: ObjectType - The type of object to add.
Group: The optional group name to add the object into.
InitiatorUID: The optional UID of the Timeline initiator.
Returns
TimelineInstance: The Timeline instance which was created (or null if an error
occurred).

RunTimelineWithForm
This method will create a new form instance, a new Timeline instance and attach
the form.
Input Parameters
PID: The Partition ID or Name.
TimelinePathName: The full path of the Timeline definition (e.g. /Process/My
Timeline).
FormPathName: The full path of the form definition (e.g. /Forms/My Form).
FormValues: The list of name/value pairs to set in the new form instance.
SkipDefaultValues: Set to true to skip merging default form values the first time
the form is viewed.
Group: The optional group name to add the object into.
InitiatorUID: The optional UID of the Timeline initiator.
Returns
TimelineInstance: The Timeline instance which was created (or null if an error
occurred).

SetActivityDueDate
This method will set a Due Datefor a specific Activity instance.

480 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Input Parameters
ACTINSTID: The Timeline Activity Instance ID.
dateDue: The Date/Time value to represent the Activity's due Date.
Returns
Boolean: True if the operation succeeds.

SetContextUID
This method will set the context UID for all future web service calls. For instance,
this UID will be used as the current user for running Knowledge Views, permission
checking, etc.
Input Parameters
UID: The ID of the user to use for the context of all calls.
Returns
Boolean: True if the operation succeeds.

Start
This method will start an instantiated Timeline Instance.
Input Parameters
TLINSTID: The ID of the Timeline Instance to start.
Returns
TimelineInstance: The actual Timeline Instance for which the context was set.

wsUser
These web services enable you to manipulate Process Director Users pro-
grammatically.

AddUserToGroup
This method will add a user to a specified group.
Input Parameters
UID: The UID of the user to add.
GID: The GID of the group to which to add the user.
Returns
Boolean: True if the operation succeeds.

AddUserToWorkspace

Developer's Reference Guide | 481

BP Logix Inc
Process Director Documentation

This method will add a user to a specified Workspace.
Input Parameters
UID: The UID of the user to add.
PROFILEID: The ProfileID of the Workspace to which to add the user.
Returns
Boolean: True if the operation succeeds.

Authenticate
This method will authenticate web service requests. Call this method prior to other
web service calls. It will automatically populate the SOAP header with a validation
token that enables subsequent web service calls.
Input Parameters
User: The built-in or Windows UserID to use for the context of all calls.
Password: The password for this UserID.
Returns
Boolean: True if the operation succeeds.

AuthenticateJSON
This method will authenticate web service requests. Call this method prior to other
web service calls. The return is a JSON string with the session ID.
Input parameters
User: The built-in or Windows UserID to use for the context of all calls.
Password: The password for this UserID.
Returns
JSON: The Session ID.

CreateExternalUser
This method will create an external user.
Input Parameters
UserID: The User ID to add.
Email: The email address of the user.
UserName: The name of the user.
GUID: The external GUID of this user record.

482 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

UserType: The authentication type for this user.
Returns
User: The new user object that was created, or null if an error occurred.

CreateExternalUser2
This method will create an external user.
Input Parameters
UserID: The User ID to add.
Email: The email address of the user.
UserName: The name of the user.
GUID: The external GUID of this user record.
UserType: The authentication type for this user.
Returns
User: The new user object that was created, or null if an error occurred.

CreateUser
This method will create a user.
Input Parameters
UserID: The User ID to add.
Email: The email address of the user.
UserName: The name of the user.
Password: The password of the user.
MustChangePassword: True if the user must change password on first login.
Returns
User: The new user object that was created, or null if an error occurred.

CreateUserInGroup
This method will create a user, and add the user to a specified Group.
Input Parameters
UserID: The User ID to add.
Email: The email address of the user.
UserName: The name of the user.
Password: The password of the user.

Developer's Reference Guide | 483

BP Logix Inc
Process Director Documentation

MustChangePassword: True if the user must change password on first login.
Group: The Group to which to add the user
Returns
User: The new user object that was created, or null if an error occurred.

DelegateUser
This method will delegate a user's tasks to another user.
Input Parameters
SrcUID: The UID of the source user.
DelegateToUID: The UID of the user to whom to delegate.
Returns
Boolean: True if the operation succeeds.

DeleteUser
This method will delete a user.
Input Parameters
UID: The UID of the user to delete.
Returns
Boolean: True if the operation succeeds.

DisableUserAccount
This method will disable the specified user's account and cancel the user in any act-
ive Workflow tasks.
Input Parameters
UID: The UID of the user whose account will be disabled.
ReplacementUID [optional]: The UID of a user who will be assigned in place of
the disabled user.
Returns
Boolean: True if the operation succeeds.

EnableUserAccount
This method will enable the specified user's account.
Input Parameters
UID: The UID of the user whose account will be enabled.

484 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Returns
Boolean: True if the operation succeeds.

GetUserByExtID
This method will get a User from its external ID field.
Input Parameters
ExtID: The external ID of the user.
Returns
User: The actual user or null if not found.

GetUserByID
This method will get a User from its UID.
Input Parameters
UID: The UID of the user.
Returns
User: The actual user or null if the user isn't found.

GetUserByUserID
This method will get a User from its UserID.
Input Parameters
UserID: The UserID of the user.
Returns
User: The actual user object or null if the user isn't found.

LockUserAccount
This method will lock the specified user's account.
Input Parameters
UID: The UID of the user whose account will be locked.
Returns
Boolean: True of the operation succeeds.

RemoveUserFromAllGroups
This method will remove a User from all user groups on the system.

Developer's Reference Guide | 485

BP Logix Inc
Process Director Documentation

Input Parameters
UID: The ID of the user to remove.
Returns
Boolean: True if the operation succeeds.

RemoveUserFromGroup
This method will remove a User from all user groups on the system.
Input Parameters
UID: The ID of the user to remove.
GID: The GID of the group from which to remove the user.
Returns
Boolean: True if the operation succeeds.

RemoveUserFromWorkspace
This method will remove a user from a specified Workspace.
Input Parameters
UID: The UID of the user to remove.
PROFILEID: The ProfileID of the Workspace from which to remove the user.
Returns
Boolean: True if the operation succeeds.

This function will also return "false" if the user is only implicitly in
the workspace, i.e., only in it because he is part of a Group that is
assigned to the Workspace, rather than being assigned to it directly as a
Workspace user. If you want to remove an implicit user from a work-
space, you have to remove the user from the group, or remove the group
from the workspace.

ReplaceUser
This method will replace the user (UID) with another user (ReplacementUID)
throughout the system.
Input Parameters
UID: The UID of the user whose account will be replaced.

486 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

ReplacementUID: The UID of a user who will be assigned in place of the disabled
user.
Returns
Boolean: True if the operation succeeds.

SetContextUID
This method will set the context UID for all future web service calls. For instance,
this UID will be used as the current user for running Knowledge Views, permission
checking, etc.
Input Parameters
UID: The ID of the user to use for the context of all calls.
Returns
Boolean: True if the operation succeeds.

UnDelegateUser
This method will stop the delegation of a user's tasks.
Input Parameters
UID: The UID of the user for whom to stop delegation.
Returns
Boolean: True if the operation succeeds.

UnlockUserAccount
This method will unlock the specified user's account.
Input Parameters
UID: The UID of the user whose account will be unlocked.
Returns
Boolean: True if the operation succeeds.

UpdateUserFields
This method will update a user's information in the database. This method won't
save any blank fields contained in the user's record.
Input Parameters
pUser: A User class containing the user's ID and the information to be updated.

Developer's Reference Guide | 487

BP Logix Inc
Process Director Documentation

Returns
Boolean: returns "true" if the operation succeeds.

UpdateUserLastActivityTime
This method will update the user object so set the current time as the last activity
time for that user.
Input Parameters
UID: The UID of the user to update.
Returns
DateTime: The DateTime value of the time the user activity was updated.

UpdateUserRecord
This method will update a user's information in the database.
Input Parameters
pUser: A User class containing the user's ID and the information to be updated.
ignoreEmptyFields: A boolean that, when set to "false", will save all empty values
in the pUser parameter into the database (normally these are ignored).
Returns
Boolean: Returns "true" if the operation succeeds.

wsUtil
These web services enable you to perform various utility functions pro-
grammatically.

Authenticate
This method will authenticate web service requests. Call this method prior to other
web service calls. It will automatically populate the SOAP header with a validation
token that enables subsequent web service calls.
Input Parameters
User: The built-in or Windows UserID to use for the context of all calls.
Password: The password for this UserID.
Returns
Boolean: True if the operation succeeds.

AuthenticateJSON

488 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

This method will authenticate web service requests. Call this method prior to other
web service calls. The return is a JSON string with the session ID.
Input parameters
User: The built-in or Windows UserID to use for the context of all calls.
Password: The password for this UserID.
Returns
JSON: The Session ID.

ConvertSysVarsInString
This method will convert system variables in a given string.
Input Parameters
pString: The string to evaluate
Returns
String: The converted string.

GetUserTasks
This method will retrieve the task list for a user.
Input Parameters
PID: The Partition ID in which to locate the tasks. You may pass an empty string to
retrieve from all partitions.
User: The UserID of the user whose task list to return.
Returns
String: An array of URL strings for task list entries.

GetUserTasksByEmail
This method will retrieve the task list for a user. This is most commonly used for
unauthenticated users, who are only identifiable by email address.
Input Parameters
PID: The Partition ID in which to locate the tasks (pass the empty string for all par-
titions).
Email: The email address of the user whose task list to return.
Returns
String: An array of URL strings for task list entries.

Developer's Reference Guide | 489

BP Logix Inc
Process Director Documentation

GetUserTasksByUID
This method will retrieve the task list for a user.
Input Parameters
PID: The Partition ID in which to locate the tasks (pass the empty string for all par-
titions).
User: The UID of the user whose task list to return.
Returns
String: An array of URL strings for task list entries.

ImportGlobalKViewXML
This imports an XML package into the Global Knowledge View list.
Input Parameters
XMLData: The bytes of the XML document to import.
Returns
RetMsg: The list of output strings after the import.

ImportProfilesXML
This imports an XML package into the Profiles.
Input Parameters
XMLData: The bytes of the XML document to import.
Returns
RetMsg: The list of output strings after the import.

LoadBalancedRequest
This method is called when a load-balanced system performs some action.
Input Parameters
Action: The description of the action to perform
Return
Success: A Boolean value reflecting the success of the web service (FALSE if errors,
TRUE if successful).

SequenceNumber
This method will get a unique sequence number.

490 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Input Parameters
Group: The optional group from which the sequence is generated.
Returns
The unique sequence number or 0 if an error occurs.

SetContextUID
This method will set the context UID for all future web service calls. For instance,
this UID will be used as the current user for running Knowledge Views, permission
checking, etc.
Input Parameters
UID: The ID of the user to use for the context of all calls
Returns
Boolean: True if the operation succeeds.

Version
This method will return the server version.
Input Parameters
None.
Returns
Version: The server version number.
VersionString: The server version string.

wsWorkflow

The Workflow object is the legacy process model used in early ver-
sions of Process Director. BP Logix recommends the use of the Process
Timeline object, and not the Workflow object. The Workflow object
remains in the product for backwards compatibility, but doesn't receive
any new functionality updates, other than required bug fixes. No new fea-
tures have been added to this object since Process Director v4.5. All new
process-based functionality is solely added to the Process Timeline.

These web services enable you to manipulate Process Director Workflows pro-
grammatically.

Developer's Reference Guide | 491

Process Timelines.htm
Process Timelines.htm

BP Logix Inc
Process Director Documentation

AddToWorkflow
This method will add an object to a Workflow instance.
Input Parameters
WFINSTID: The ID of the Workflow Instance.
ID: The ID of the object to add.
Type: ObjectType - The type of object to add.
Group: The optional group name to add the object into.
Returns
WorkflowInstance: The Workflow instance which the call ran (or null if an error
occurred).

AddUsersToStep
This method will add user(s) to a specific step instance.
Input Parameters
STINSTID: The Workflow Step Instance ID.
UID: Comma separated list of UIDs to add.
Returns
Boolean: True if the operation succeeds.

Authenticate
This method will authenticate web service requests. Call this method prior to other
web service calls. It will automatically populate the SOAP header with a validation
token that enables subsequent web service calls.
Input Parameters
User: The built-in or Windows UserID to use for the context of all calls.
Password: The password for this UserID.
Returns
Boolean: True if the operation succeeds.

AuthenticateJSON
This method will authenticate web service requests. Call this method prior to other
web service calls. The return is a JSON string with the session ID.

492 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Input parameters
User: The built-in or Windows UserID to use for the context of all calls.
Password: The password for this UserID.
Returns
JSON: The Session ID.

Cancel
This method will cancel a running Workflow instance.
Input Parameters
WFINSTID: The ID of the Workflow Instance
Returns
WorkflowInstance: The actual Workflow instance that was canceled, or Null if not
found.

GetWorkflowByWFID
This method will get a Workflow definition from its WFID.
Input Parameters
WFID: The ID of the Workflow Definition
Returns
WorkflowDefinition: The actual Workflow definition, or null if not found.

GetWorkflowByWFINSTID
This method will get a Workflow instance from its WFINSTID.
Input Parameters
WFINSTID: The ID of the Workflow Instance.
Returns
WorkflowInstance: The actual Workflow instance, or null if not found.

GetWorkflowStepByName
This method will return a Workflow Step for a specific Workflow instance.
Input Parameters
WFINSTID: The Workflow Instance ID.
StepName: The Workflow Step name to retrieve.

Developer's Reference Guide | 493

BP Logix Inc
Process Director Documentation

Returns
WorkflowStep: The Workflow Step, or null if an error occurred.

GetWorkflowStepBySTID
This method will return a Workflow Step for a specific Workflow instance.
Input Parameters
WFINSTID: The Workflow Instance ID.
STID: The Workflow Step ID to retrieve.
Returns
WorkflowStep: The Workflow Step, or null if not found.

Instantiate
This method will instantiate a Workflow Instance from a WFID.
Input Parameters
WFID: The ID of the Workflow Definition to instantiate.
InitiatorUID: The optional UID of the Workflow initiator.
Returns
WorkflowInstance: The Workflow instance which the call instantiated, or null if an
error occurred.

PostEvent
This method will post an event to a Workflow that is waiting on a Wait step.
Input Parameters
WFINSTID: The optional ID of the Workflow Instance to POST.
EventName: The optional Event Name to post.
Returns
Boolean: True if the operation succeeds.

RemoveUsersFromStep
This method will remove user(s) from a specific step instance.
Input Parameters
STINSTID: The Workflow Step Instance ID.
UID: Comma separated list of UIDs to add.

494 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Returns
Boolean: True if the operation succeeds.

Restart
This method will restart an existing Workflow instance WFINSTID at an optional
step STID.
Input Parameters
WFINSTID: The ID of the Workflow Instance to restart.
STID: The STEP ID of the STEP in the Workflow definition to restart (optional).
Returns
WorkflowInstance: The Workflow instance which the call restarted, or null if an
error prevents execution of the operation.

Run
This method will instantiate and run a Workflow Instance from a WFID.
Input Parameters
WFID: The ID of the Workflow Definition to run.
Returns
WorkflowInstance: The Workflow instance which the call ran , or null if an error
prevents execution of the operation.

RunWorkflow
This method will create and run a new Workflow instance and optionally add a
Workflow object.
Input Parameters
PID: The Partition ID or Name.
PathName: The full path of the Workflow definition (e.g. /Workflows/My Work-
flow).
ID: The ID of the object to add.
Type: ObjectType - Place "NotSet" in this field.
Group: The optional group name to add the object into.
InitiatorUID: The optional UID of the Workflow initiator.

Developer's Reference Guide | 495

BP Logix Inc
Process Director Documentation

Returns
WorkflowInstance: The Workflow instance which was created , or null if an error
prevents execution of the operation.

RunWorkflowWithForm
This method will create a new form instance, a new Workflow instance and attach
the form.
Input Parameters
PID: The Partition ID or Name.
WorkflowPathName: The full path of the Workflow definition (e.g. /Workflows/My
Workflow).
FormPathName: The full path of the form definition (e.g. /Forms/My Form).
FormValues: The list of name/value pairs to set in the new form instance.
SkipDefaultValues: Set to true to skip merging default form values the first time
the form is viewed.
Group: The optional group name to add the object into.
InitiatorUID: The optional UID of the Workflow initiator.
Returns
WorkflowInstance: The Workflow instance which was created , or null if an error
prevents execution of the operation.

SetContextUID
This method will set the context UID for all future web service calls. For instance,
this UID will be used as the current user for running Knowledge Views, permission
checking, etc.
Input Parameters
UID: The ID of the user to use for the context of all calls.
Returns
Boolean: True if the operation succeeds.

SetStepDueDate
This method will set a Due Date for a specific step instance.
Input Parameters
STINSTID: The Workflow Step Instance ID.

496 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

dateDue: The Date/Time value to represent the Step's due Date.
Returns
Boolean: True if the operation succeeds.

Start
This method will start an instantiated Workflow Instance.
Input Parameters
WFINSTID: The ID of the Workflow Instance to start.
Returns
WorkflowInstance: The actual Workflow Instance.

REST Services
REST (Representational State Transfer) is a standards-based data architecture for
sharing data between computers, using web-based access. Services that use REST
are often called RESTful services. A REST service usually transfers data from a
server-based data store to a client machine that requests it in a specified format—
usually via a specifically configured URL.
The important thing to remember about REST services is that the server and client
machines are unrelated. The activities on the client are completely unaffected by
the activities of the server, and vice versa. Unlike a connection to a database like
SQL server, the client machine does not need to store a connection string or main-
tain a constant connection to the server. Similarly, any changes to the code or oper-
ations of either machine have no effect on the other.
The only connection that occurs between the two systems is when the client
machine sends a request to the server via URL, and the server responds by send-
ing back data in a REST-compliant format. This "connection" is also stateless,
which is to say that the server and client machines know nothing about each other,
outside of a specific REST transaction. A REST transaction consists of a request
from the client, and a response from the server that contains the requested data.
The REST request must provide all of the information necessary for the server to
respond to the request properly. The server cannot use any knowledge of past
requests to complete the current request and return a response. Each transaction
is made as if it was an entirely new request, unrelated to any previous requests.

Developer's Reference Guide | 497

BP Logix Inc
Process Director Documentation

REST is not a programming format. It is purely a set of architectural guidelines for
the communications format used between two systems. As long as each machine
knows which format to use for requests and responses, data can be shared.
Because REST is an architectural construct, it is language-independent. REST ser-
vices can be constructed in any programming language, and the programming lan-
guage used by the client and server are irrelevant to each other. As long as both
systems use the correct architecture for their communication, they can share data.

The REST Request #
A REST Request is a message sent to a server that asks for a response containing
data. In most cases, a REST request is sent to an available URL. The URL may be
publicly available as a service on the internet, or it may be available only inside the
same network as the client. As long as the client can access the URL, however, it
can request a REST response from the server.
The URL contained in the REST request is usually formatted in a specific way, in
order to match the way in which the REST service is implemented on the server.
For example, the REST service may require the URL be formatted hierarchically. A
notional request URL for a publicly available REST Service that returns the current
weather might be:
https://myrestservice.com/current/zip/92111

The server would interpret this request as asking for the current weather for the
92111 Zip Code.
Alternatively, the URL for the same information might require a URL that uses para-
meters, such as:
https://myrestservice.com?type=current&zip=92111

Both of these formats can constitute valid requests, as long as the server under-
stands the format.
The REST Request may be more complex than shown above, and require additional
information such as login credentials, specific HTTP header information sent with
the request, and Key/Value pairs to provide parameters, or include other inform-
ation. In Process Director, much of this additional complexity is hidden, but a fully
formatted REST request with header information and Key/Value pairs to provide
parameters for the data to return might look like this.

498 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

POST https://myrestservice.com/weather HTTP/1.1
Host: myrestservice.com
Content-Type: application/json
Content-Length: 42
{"Type":"current","Zip":92111}

Business Values have a feature for adding authentication credentials and
Key/Value pairs to the HTTP header, as described in the Business Values topic of
the Implementer's Guide.

The REST Response #
Once the server receives a valid request, the REST Response returns the requested
data. Even if there's no data to return, the server will still send a response, to note
that the request was received and fulfilled. The REST response will be presented in
one of two formats, JSON or XML.
Both XML and JSON formats are used to represent data, though each one is very
different.
XML is a highly-structured data language. Each element of data is presented in
nodes that are set off by the <> characters, e.g.:
<temperature value="78.66" min="70.56" max="87.89" unit-
t="fahrenheit"/>

JSON, on the other hand, is less highly structured than XML, and data is returned in
a JavaScript-based format, e.g.:
"temperature": {"curr":78.66,"min":70.56,"max":87.89}

This format is not JavaScript, though it is based on the JavaScript language struc-
ture. Both JSON and XML are language-independent formats, and both are essen-
tially formatted text files, though the formatting is, as we shall see later in this
module, very important.
There are advantages and disadvantages between the two language formats.

l XML, because it's so highly structured, is very good at returning hierarchical
data in a more easily comprehensible format. It's easier for humans to parse
when, as we'll see later, we need to find specific data in an XML response. On
the other hand, XML is relatively verbose, which means that, given the same
data, an XML response might be significantly larger and take up more memory,
than a JSON response.

Developer's Reference Guide | 499

Business Values.htm

BP Logix Inc
Process Director Documentation

l JSON, being less structured, is more flexible. A JSON response could structure
the data in many different ways, while the highly structured nature of XML lim-
its the way in which data can be returned. On the other hand, this flexibility
means that two similar requests might return data that is structured slightly dif-
ferently, meaning that the method you use to parse one request might not
work on a similar one. Also, JSON's variable structure, and lack of a specific
node structure can make JSON less readable and harder to parse by humans.

In general, JSON is a more popular format, due in part to its flexibility and ver-
satility, but mainly because JSON responses are generally more lightweight than
XML responses. There are still many REST services that return XML, or return both
formats. In Process Director, both XML and JSON response formats can be used.

More Information about Rest Services
JSON and XML for REST: How sample XML or JSON REST responses might com-
pare.
JSONPath and XPath: A comparison of the XPath and JSON Path syntax needed to
parse XML or JSON REST responses.

JSON and XML for REST
To illustrate the different between JSON and XML data that might be returned from
a REST service, let's look at a small data sample, and see how it would be rep-
resented in each language. For this example, we'll use a list of file names that
might be returned by a REST Service:

l Image1.jpg
l Description.docx
l Forecast.xlsx
l Agreement.pdf
l NetworkDiagram.vsdx

500 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

XML
<?xml version="1.0"?>
 <Files>
 <item>Image1.jpg</item>
 <item>Description.docx</item>
 <item>Forecast.xlsx</item>
 <item>Agreement.pdf</item>
 <item>NetworkDiagram.vsdx</item>
 </Files>

The structured nature of XML limits how we can represent this data. We must have
a "Files" node that contains all of the files. Each file needs its own "Item" node.
Because XML is so highly structured, there are strict limits on how data can be rep-
resented.

JSON
JSON is much less structured than XML, and can present this same data in many
ways.

Single Elements

{
 "Image":"Image1.jpg",
 "Document1":"Description.do-
cx",
 "Spreadsheet":"Forecast.xls-
x",
 "PDF":"Agreement.pdf",
 "Visio":"NetworkDiagram.vsd-
x"
}

Structured Array

[
{"Files":"Image1.jpg"},
{"Files":"De-

scription.docx"},
{"Files":"Fore-

cast.xlsx"},
{"Files":"A-

greement.pdf"},
{"Files":"Net-

workDiagram.vsdx"}
]

Unstructured Array Elements

{
 "Files":

[
 "Image1.jpg",
 "Description.docx",
 "Forecast.xlsx",
 "Agreement.pdf",
 "NetworkDiagram.vsdx"
]
}

Structured Array Elements

{
 "Files":

[
{"f":"Image1.jpg"},
{"f":"De-

scription.docx"},
{"f":"Fore-

cast.xlsx"},
{"f":"A-

greement.pdf"},

Developer's Reference Guide | 501

BP Logix Inc
Process Director Documentation

{"f":"Net-
workDiagram.vsdx"}
]
}

While this flexibility is nice, it does mean that you need to know, to a much greater
degree than with XML, how the specific data you get in a response is structured, in
order to parse and use it properly.
From an implementer's point of view, you may find XML REST Services easier to
work with, if available, especially if you're just starting to use REST services. The
structured nature of XML generally makes it more readable, and easier to under-
stand.

More Information about Rest Services
REST Services: An overview of using REST Web Services.
JSONPath and XPath: A comparison of the XPath and JSON Path syntax needed to
parse XML or JSON REST responses.

JSONPath and XPath
In most cases, you'll use a Business Value to request and parse responses from
REST Web services. In Process Director, the Business Value provides the easiest
and most effective method for making REST requests and using the data that is
included in the REST response.
Just like a Business Value that returns SQL data, a REST Business value will receive
a response containing data field values. You must configure a Business Value prop-
erty for each data field you wish to access from the REST Response.
For each property, the Property Name column is where you'll provide a name for
each property, which will be used in the Process Director UI. For each field in the
REST Response, the Property Type must be set to REST Data in order to extract the
data from a single data field in the REST Response.
An additional setting, Entire REST Response will, as the name implies, simply use the
entire XML or JSON file content as the property value. This setting may be useful if
you need to see the REST Response contents to understand how to parse them to
extract individual fields.

502 | Developer's Reference Guide

Business Values.htm

BP Logix Inc
Process Director Documentation

Parsing the REST Response is very important to ensure you extract the correct
data. The Property Value column is where you provide Process Director with the
instructions on which REST Response field you wish to extract for each property.
Unlike a SQL Business Value, where you simply write the name of a valid database
field in this column, a Rest Business Value requires that you provide detailed
instructions for parsing the REST Response, to extract the data you want.
The parsing syntax you'll need to use will vary, based on whether the REST
Response contains data in XML or JSON Format. Parsing an XML REST response
requires you to use a parsing format called XPath, while parsing a JSON response
requires the use of JSONPath.
Time and space do not allow us to provide detailed training on these two parsing
formats here. There are many freely available resources on the Internet for learn-
ing the basics of both XPath and JSONPath. Here are two resources you might find
useful, but there are many others:

l XPath: W3Schools.Com
l JSONPath: SmartBear.com

BP Logix does not endorse these resources. They are merely shown
here for your convenience.

Let's look at some simple XML and JSON REST Responses to see how we'd parse
them using each format. For this example, we'll use some sample weather data for
San Diego, CA. These REST documents are available on the BP Logix Docu-
mentation portal. Those these are static documents, you can use their URL as the
REST URL of a Business Value, for testing on your Process Director installation.

l XML REST Response
l JSON REST Response

You can use the URL for either of these documents

XML and XPath #
The XML REST Response looks like this:

<current>
 <city id="0" name="San Diego">
 <coord lon="-117.2028" lat="32.7635" />

Developer's Reference Guide | 503

https://www.w3schools.com/xml/xpath_intro.asp
https://support.smartbear.com/alertsite/docs/monitors/api/endpoint/jsonpath.html
weather.xml
weather.json

BP Logix Inc
Process Director Documentation

 <country>US</country>
 <timezone>-25200</timezone>
 <sun rise="2023-04-07T13:29:04" set="2023-04-
08T02:12:27" />
 </city>
 <temperature value="66.67" min="59.76" max="74.79" unit-
t="fahrenheit" />
 <feels_like value="65.57" unit="fahrenheit" />
 <humidity value="54" unit="%" />
 <pressure value="1017" unit="hPa" />
 <wind>
 <speed value="12.66" unit="mph" name="Moderate breeze"
/>
 <gusts />
 <direction value="270" code="W" name="West" />
 </wind>
 <clouds value="75" name="broken clouds" />
 <visibility value="10000" />
 <precipitation mode="no" />
 <weather number="803" value="broken clouds" icon="04d" />
 <lastupdate value="2023-04-07T21:39:25" />
</current>

XPath uses the forward slash character (/) to navigate from the highest node to
the lowest one. The current node is the top node of the XML REST response, and
it contains the city, clouds, and temperature nodes.
Part of XML's structured nature is to name each node in the XML structure. At the
very top of the response, the first node is named <current>. Since we have to
start our XPath expression at the highest node, and we need to add a slash
between each node, our XPath expression will begin with:
current/

If we want to find the XML node that tells us whether it's clear or cloudy, we'd
need to add the <clouds> node, which is located in the second level of the XML
hierarchy:
current/clouds/

The <clouds> node contains two attributes: value and name. We need to get the
data in the name attribute. Attributes are identified using the "At sign" (@), which
means that this value is an attribute of the previous node. So, we need to add this
value to our expression as:
current/clouds/@name

504 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

This gives us the full XPath expression to access our data, which should return the
value broken clouds.
We can use different XPath expressions to return other data from this response, as
shown in the table below.

Data XPath Expression

City current/city/@name

Country current/city/country

Current Temp current/temperature/@value

Low Temp current/temperature/@min

High Temp current/temperature/@max

JSON and JSONPath #
The JSON REST Response looks like this (Though the formatting makes it look like
the JSON Response contains more information, it is the same length, 859 char-
acters, as the XML response shown above):

{
 "coord": {
 "lon": -117.2028,
 "lat": 32.7635
 },
 "weather": [

{
 "id": 803,
 "main": "Clouds",
 "description": "broken clouds",
 "icon": "04d"
 }
],
 "base": "stations",
 "main": {
 "temp": 66.65,
 "feels_like": 65.55,
 "temp_min": 59.76,
 "temp_max": 74.79,
 "pressure": 1017,
 "humidity": 54
 },
 "visibility": 10000,
 "wind": {
 "speed": 12.66,
 "deg": 270

Developer's Reference Guide | 505

BP Logix Inc
Process Director Documentation

 },
 "clouds": {
 "all": 75
 },
 "dt": 1680903688,
 "sys": {
 "type": 2,
 "id": 2017332,
 "country": "US",
 "sunrise": 1680874144,
 "sunset": 1680919947
 },
 "timezone": -25200,
 "id": 0,
 "name": "San Diego",
 "cod": 200
}

JSON path uses a dollar sign character ($) to denote the top or global level of the
JSON response. Each level below that is separated by a period (.)character.
In JSON, each data node in the hierarchy is marked by the use of either curly brack-
ets ({})or square brackets ([]). In general, when counting from the top of the
Response, each time we reach a bracket character, we need to use a period (.) to
specify a different node.
The global JSON Response is always specified by using the dollar sign ($) character.
So, that's always the first character of a JSONPath parsing phrase. At the very top
of the response is the opening curly bracket that contains the full response. This
curly bracket starts the first node of the response, and we have to add a period to
the JSONPath expression to indicate we are moving to the next lower node in the
hierarchy:
$.

At this level of the response, there are two nodes, coord and weather. If we once
again want to extract the data that indicates whether it's clear or cloudy, the data
we need is in the weather node, so we need to add it to the JSONPath expresson:
$.weather

The weather portion of the JSON response contains several lower-level nodes. The
actual data for current conditions is contained in the main node of the weather
portion. But note that, immediately after weather, there is a square bracket, fol-
lowed by a curly bracket in the JSON response. Each of these brackets requires that

506 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

we add a period character as a node marker for each of them, in order to properly
count the nodes between weather and main. Thus, we end up with our com-
pletely parsed path of:
$.weather..main

This gives us the full JSONPath expression to access our data, which should return
the value Clouds.
We can use different JSON Path expressions to return other data from this
response, as shown in the table below.

Data JSONPath Expression

City $.name

Country $.sys.country

Current Temp $.main.temp

Low Temp $.main.temp_min

High Temp $.main.temp_max

More Information about Rest Services
REST Services: An overview of using REST Web Services.
JSON and XML for REST: How sample XML or JSON REST responses might com-
pare.

Developer's Reference Guide | 507

BP Logix Inc
Process Director Documentation

This page intentionally left blank.

BP Logix Inc
Process Director Documentation

Index

.

.NET eForm 10

A

ADAuthNoDomain 293
ADAuthSettings 293
Add 116
AddBottomHTML 159
AddDocumentFromBytes 117
AddDocumentFromFS 117
AddErrorMessage 156
AddGroupToWorkspace 469
AddInfoMessage 157
Adding a New eForm Definition 28
AddJavaScript 158
AddObjectMap 118
AddPending 119
AddRow 34, 175
AddRowToCommentLog 176
AddSAMLGroups 368
AddSAMLGroupsIgnore 368
AddSharedDelegate 244
AddToCase 105
AddToDropDown 176
AddToGroup 244
AddTopHTML 159
AddToProcess 202

Developer's Reference Guide | 509

BP Logix Inc
Process Director Documentation

AddToProject 223
AddToTimeline 476
AddToWorkflow 259, 492
AddUser 184
AddUsersToActivity 476
AddUsersToStep 492
AddUsersToTask 212
AddUserToGroup 481
AddUserToPartition 244
AddUserToProfile 245
AddUserToWorkspace 482
ADGrouphierarchy 293
ADSSLOptions 295
AllowedExportLocations 300
AllowRichTextTemplate 401
AlwaysFindTaskForForms 392
AppendPath 456
Array 35
ArrayMoveDown 37, 41
ArrayMoveUp 36
ArrayRemoveRow 35
AssignCategory 119
Attach 37
AttributeExists 457
Authenticate 449, 453, 457, 464, 470, 473, 475-476, 482, 488, 492
AuthenticateJSON 449, 454, 457, 464, 470, 473, 475, 477, 482, 489, 492
AutoMultilineTextBoxResize 401
AutoMultilineTextBoxResizeClass 402

510 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

B

BaseURLFromRenderingServer 365
bp Class 89
bpButton 42
bpCheckBox 42
bpFormOpenSize 403
bpImage 43
bpLabel 44
bpPopupOpenSize 403
bpString 44
bpTextBox 44
Building the eForm and Script 85
BusinessHolidays 321
BusinessHourStart 323, 382
BusinessHourStop 324
ButtonArea 45

C

CacheCount 139
Calculate 48
Calling BP Logix Web Services 446
Calling Other Web Services 446
Cancel 48, 203, 260, 477, 493
CancelTask 212, 238
CancelUser 219, 229
CategoryExists 457
CategoryPicker 49
CheckForAdvance 89, 203
CheckReminderBusinessHours 324
Classes 88

Developer's Reference Guide | 511

BP Logix Inc
Process Director Documentation

CLASSES 89
ClearCache 140
ClearDropDown 178
ClearJavaScript 158
ClearRows 178
ColumnSum 178
CommentLog 50
CompleteTask 238
CompleteUser 220, 230
Configuration vs. Running 85
Constructor 147, 183
ContentObject Class 113
ContentPicker 50
ControlPicker 51
ConvertSysVarsInString 120, 160, 220, 230, 489
ConvertSysVarsInString (Static Method) 203
Copy 110, 112, 235
CopyObject 120
CreateCase 106, 454
CreateDummy 160
CreateExternalUser 482
CreateExternalUser (Static Method) 246
CreateExternalUser2 483
CreateFolder 191
CreateForm 464
CreateFormEx 464
CreateFormEx2 465
CreateGroup 184, 470
CreateNewFolder 458
CreateNewFolder (Static Method) 152

512 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

CreatePath 458
CreatePath (Static Method) 151
CreatePDFForDocument 194
CreatePDFFromDoc 195
CreatePDFFromDocument 195
CreatePDFFromForm 196
CreatePDFFromImage 196
CreatePDFFromRoutingSlip 196
CreatePDFFromString 197
CreatePDFFromTextFile 197
CreatePDFFromURL 198
CreateSimpleCase 454
CreateSimpleForm 466
CreateSubFolder 152
CreateThumbnail 142-143
CreateUser 483
CreateUser (Static Method) 245
CreateUserInGroup 483
Creating a Custom Task 85
CREATING ASP.NET EFORMS 27
Culture 276
Custom ASPX Pages 27
Custom Font 436
Custom Fonts 436
Custom Form Control Styles 288
CUSTOM SCRIPTING 12, 15, 20, 25, 27, 81
CUSTOM TASKS 83
Custom Timeline Reminder Times 390
Custom Variables 291
Custom Workflow Reminder Times 391

Developer's Reference Guide | 513

BP Logix Inc
Process Director Documentation

Custom Workflow Step Colors 389, 422
CustomHTMLHeadTags 403
CUSTOMIZATION FILE 282, 291-292, 298, 317, 321, 329, 333, 336, 341, 355, 361,

364, 366, 368, 378, 383, 392, 398, 401, 424, 427
Customization through Scripting 10

D

DataSource Class 139
DateDiff 53
DateDiff (Static Method) 90
DatePicker 52
DateTimePicker 52
DBConnectorPicker 54
DBOpenComplete 90
Debugging Process Scripts 22
DecodeLDAPName 247
DefaultBVRestAccept 367
DefaultBVRestContentType 367
DefaultBVRestCredentials 368
DefaultBVRestHeaders 367
DefaultHTMLEncode 324
DefaultInviteEmail 325
DefaultNewUsersToDayPass 424
DefaultPasswordEmail 325
DefaultTimelineEmail 326
DefaultWorkflowEmail 326
DelegateUser 247, 484
DelegationAdminGroups 424
Delete 185, 248
DeleteGroup 185, 471

514 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

DeleteObject 121, 458
DeleteObjectAndChildren 121, 458
DeleteUser 248, 484
Developing an eForm in the .NET environment 32
Development 88
DisabledTabsDisabled 327
DisableInlineErrorsWithPopup 404
DisableParentRefreshForm 404
DisableUser 249
DisableUserAccount 484
DisableUserEmail 249
Document Object Class 141
Documentation 7
DoValidation 161
DropDown 54
Dropdown Object Class 144
DropdownValue Object Class 146

E

EFORM CONTROLS 34
eForm Custom Tasks 84
eForms 170
EmbedDocumentTypes 383
EnableFormFieldDownload 305
EnableFormThemes 406
EnableReactAdminPages 404
EnableUser 249
EnableUserAccount 484
EnableUserEmail 250
EnumerateUserGroups 471

Developer's Reference Guide | 515

BP Logix Inc
Process Director Documentation

Evaluate 232, 475
EventLogErrorAudits 321
EventLogInfoAudits 320
Events 170
Excel Class 148
ExportReport 231, 473
ExportReportEx 473
EXT_User_AutoCreate 369
EXT_User_AutoCreateDisabled 369
Extending BP Logix Web Services 445

F

fADSyncAllowManagerOtherOU 296
fAllowCustomUserString 302
fAllowLoginRememberMe 425
fAllowRetrievePassword 386, 425
fAllowUnencodedSysvarsinBV 383
fAllowV6Import 341
fAuditAnonAccesses 317
fAuditFormAPICalls 317
fAuditFormViews 317
fAuditLogFileOnly 318
fAuthFastLDAP 329
fAuthLDAP 329
fAuthLDAPAutoAdd 330
fAuthLDAPEx 329
fAuthSAMLAllowDuplicateUserIDs 370
fAuthWindows 302
fAuthWindowsIntegrated 303
fAutoDST 303

516 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

fCancelSubWorkflows 393
fCloseEditAfterUpload 384
fCONTAINSUseValueSearchOnly 341
fCopyRefsFromRealProcessToKViewProcess 384
fDeleteDocOnRemove 385
fDisableAsyncWorkflow 361
fDisableCSVNumberStringLogic 385
fDisableDetailedAttach 407
fDisableExcelImport 304
fDisableImageResize 407
fDisableImplicitPartitionGroupUsers 425
fDisableKViewAppCaches 304
fDisableUserPrediction 298
fDisableUserProfileEmailChange 398
fDisableUserRenameOnDisable 426
fDocRemovedInPopup 408
fEnableAccessibility 405
fEnableContentListLimit 386
fEnableDatabaseLogs 336
fEnableDenyPermissions 305, 399
fEnableEncryptionMigration 301
fEnableFormFieldDownload 305, 354
fEnableJavaScriptDev 387
fEnableJSURL 306
fEnableKViewFilterOnSavedForLater 408
fEnableMultFormFieldsInCols 342
fEnableMultiLanguage 409
fEnableOldShowAttach 306
fEnableSQLEscape 388
fEnableThumbnails 306, 409

Developer's Reference Guide | 517

BP Logix Inc
Process Director Documentation

fEnableTransOnKVIEW 342
fEnableTransOnSELECT 343
fEnableUndelegationRestart 393
fForceInviteEmail 394
fFormDataTrans 343
fFormSaveUpdatesOnly 343
fFormSkipDisableFieldsSave 344
fFormSkipHiddenFieldsSave 344
fHideLabelsFromConditions 345
fIgnoreAccessibilityFlag 409
FileUploadBlacklist 388
FileUploadBlacklistAlternateText 388
FillDropDown 178
fIncludeBootstrap 406
FindControlInForms 161
fInternalDSPadminOnly 361
fInternalUserDSPadminOnly 362
fKeepADSyncInfoLogs 337
fListenToEmailSetting 345
fLoginBgRand 410
fNewSkipPendingLogic 362
Folder Class 150
Fonts 436
fOpenFormNewTab 407
ForceHttpOnlyCookies 327
ForceMobileAdvanced 327
ForcePwdChangeEvery 355
ForceSecureCookies 308, 328
ForgotPasswordRedirectURL 355
Form Class 153

518 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Form Scripts 15
FormatCurr (Static Method) 91
FormControl 162
FormControl Class 173
FormControlByID 163-164
FormControls 163
FormEditorConfig 410, 427
FormErrorStrings 55
FormFieldsAllowDisabledURLUpdate 346
FormInfoStrings 55
FormMessageString Class 183
fPDFCreateOtherAsAttachments 345
fPreventTaskCompleteIfCheckout 394
fReAuthFillUserID 346, 411
fReenableUsersOnSync 297
fRemoveSavedInstForOldUsers 307
fReportShowExportTo 364
fReportViewsPadminOnly 362
fScriptsPadminOnly 363
fSendEmailOnWfAdmin 394
fSharedDelegationAllProcesses 307
fSharedDelegationNextTask 426
fShowPredictedDates 411
fShowProcessCancelReasonOnUser 411
fShowResultOnNotNeeded 395
fSkipNextPageCheck 347
fSkipWhereUsedCheck 347
fStartUsersAddedToGroup 395
fSyncExtraLog 297
fTestMode 308

Developer's Reference Guide | 519

BP Logix Inc
Process Director Documentation

fTurnOffSharedDelegation 399
fTurnOffUserProfileEmail 400
fTurnOffUserProfileTimeZone 399
fTurnOnDelegationGroups 426
fUnlockAcctOnPasswordReset 355
fUseAsyncUpload 347
fUseNewLoginSessionGUID 309
fWebServiceAllowCredentialsURL 310, 348

G

GetActivityByACTID 477
GetActivityByName 223, 478
GetAllGroups (Static Method) 185
GetAllUsers (Static Method) 250
GetAttribute 122, 459
GetAttributes 123
GetBusinessValueByID 102
GetBusinessValueByName 103
GetBytes 142
GetCaseByCASEID 106
GetCaseByCASEINSTID 106, 455
GetCaseData 455
GetCaseProperties 107, 455
GetCategory 189
GetCategoryByID 189
GetCategoryByName 190
GetCategoryID 190
GetChildren 123, 204, 260
GetCurrentProfileName 93
GetDatabaseInfo 450

520 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

GetDataSourceByDSID (Static Method) 140
GetDataSourceByName (Static Method) 140
GetDataSources 192
GetDisabledUsers 450
GetDiskInfo 450
GetDocumentByDID (Static Method) 142
GetDropDownByDDID (Static Method) 145
GetDropDownValues (Static Method) 146
GetErrorMessages 164
GetExcelRows 91
GetFileType 125
GetFolderByID 459
GetFolderByID (Static Method) 152
GetFolderByPathName 459
GetFolderByPathName (Static Method) 153
GetFormByFORMID 165
GetFormByFORMINSTID 466
GetFormByFORMINSTID (Static Method) 165
GetFormData 466
GetFormDataEx 467
GetFormFields 198
GetFormSchema 166, 467
GetFormSchemaEx 467
GetGroupByID 471
GetGroupByID (Static Method) 186
GetGroupByName 471
GetGroupByName (Static Method) 186
GetInfoMessages 166
GetJavaScript 167
GetLoggedInUsers 451

Developer's Reference Guide | 521

BP Logix Inc
Process Director Documentation

GetMaximumUsers 451
GetObjectByID 459
GetObjectByID (Static Method) 125
GetObjectByPathName 460
GetObjectByPathName (Static Method) 126
GetObjectsByType 451
GetObjectsFromParent 460
GetObjectsFromParentID 460
GetPartition (Static Method) 192
GetPartitionByID (Static Method) 193
GetPartitionByName (Static Method) 193
GetPartitionID (Static Method) 193
GetPartitions 460
GetPermissions 126-127
GetProcessByID 204
GetProcessByInstID 204
GetProcessTaskByTASKID (Static Method) 213
GetProcessTaskByTASKINSTID (Static Method) 213
GetProcessTaskUserByTASKUID 221
GetProcessTaskUserByTASKUINSTID 221
GetProjectActivityByACTID 227
GetProjectActivityByACTINSTID 227
GetProjectActivityByName 228
GetProjectByPRID 223
GetProjectByPRINSTID 224
GetPropertyDateTime 108
GetPropertyNumber 107
GetPropertyText 107
GetReportByRID 474
GetRootCategory 191

522 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

GetRootFolder 111, 194, 235, 461
GetRuleByID 233
GetRuleByName 233
GetRuleByRULEID 475
GetServerInfo 451
GetStream 143
GetSubProcesses 205
GetTaskByName 205
GetTaskByName (Static Method) 214
GetTaskByTLID (Static Method) 239
GetTasksForEmail 239
GetTasksForUser (Static Method) 240
GetTempDirectory 92
GetTimelineByTLID 478
GetTimelineByTLINSTID 478
GetTotalActiveUsers 452
GetTotalGroups 452
GetTotalUsers 453
GetUserByEmail (Static Method) 250
GetUserByExtID 485
GetUserByExtID (Static Method) 251
GetUserByID 485
GetUserByID (Static Method) 251-252
GetUserByUserID 485-486
GetUsers 471
GetUserTasks 489
GetUserTasksByEmail 489
GetUserTasksByUID 490
GetValueByCell 148
GetValueByRangeName 149

Developer's Reference Guide | 523

BP Logix Inc
Process Director Documentation

GetValuesByCell 148
GetValuesByRow 150
GetWorkflowByWFID 493
GetWorkflowByWFID (Static Method) 261
GetWorkflowByWFINSTID 493
GetWorkflowByWFINSTID (Static Method) 261
GetWorkflowStepByName 261, 493
GetWorkflowStepByName (Static Method) 265
GetWorkflowStepBySTID 494
GetWorkflowStepBySTID (Static Method) 265
GetWorkflowStepBySTINSTID (Static Method) 266
GetWorkflowStepUserBySUINSTID (Static Method) 269
GetWorkspaceByName 270
GetWorkspaceByPROFILEID 270
Google Sentiment 352
GoogleSentiment_client_email 352-353
GoogleSentiment_private_key 352
GoogleSentiment_project_id 352
Group Class 183
GroupPicker 55

H

HasUser 187
How Custom Tasks Work 84
HTML 56
HTMLEncode / HTMLDecode (Static Method) 93
HTTPPoke (Static Method) 94
HTTPRequest (Static Method) 93
HTTPRequestBytes (Static Method) 94
HTTPRest (Static Method) 94

524 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

I

IgnoreSection 57
ImportExcelDatabase (Static Method) 95
ImportGlobalKViewXML 490
ImportProfilesXML 490
ImportUsersFromExcel 253
ImportXML 461
ImportXML, ImportGlobalKViewXML, ImportProfilesXML 97
Include Files 33
InGroup 253
InlineDocumentTypes 412
Instantiate 206, 455, 467, 478, 494
Instantiate (Static Method) 167
INT | CURR | DOUBLE | DECIMAL | BPDATETIME (Static Method) 96
iPopupSimple 272
IsCatAssigned 128

J

JavaScript APIs 271
JumpToStep 262, 266
JumpToStepID 262, 266

K

Knowledge View Scripts 25

L

Language 276
LDAP_DisplayName_Field 330
LDAP_Email_Field 330
LDAP_GUID_Field 331
LDAP_PageSize 332

Developer's Reference Guide | 525

BP Logix Inc
Process Director Documentation

LDAP_URL 332
LDAP_UserID_Field 332
LDAPEx_ReferralChasing 331
LeaveCaseButtonText 412
ListBox 58
LoadBalancedRequest 490
Locales 310
Localization 276
LockUserAccount 254, 485
log0 | log1 | log2 | log3 | log4 | log5 (Static Method) 98
Login (Static Method) 98
LoginFailuresUntilLock 356
LoginMessage 412

M

MatchSAMLGroups 370
MaxUploadSize 335
MergePDFs 199
MetaCategory Class 189
metadata 49, 457, 462
Methods 89, 102, 105, 110, 112, 116, 139, 142, 145-146, 148, 151, 156, 175, 184,

189, 191, 194, 202, 212, 219, 223, 227, 229, 231-232, 235-236, 238, 243, 259,
265, 269-270

MoveObject 128, 461

N

nAppenateCompanyID 353
nArchiveLogDays 337
nAsyncSubProcessWaitSecs 363
nAuditLogDays 318-319
nDBCommandTimeout 348

526 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

nDBTransIsolationLevel 349
nDebugProcessTimeFactor 349
nFormOpenProps 413
nHomeTopHeight 414
nHomeTopWidth 414
nImportLogDays 337-338
nImportLogImportDays 338
nImportLogKVRunDays 339
nImportLogMLPublishDays 339
nImportLogSArunDays 339
nImportLogSyncDays 340
nKViewBuiltinMaxResults 333
nLimitSearchToChars 349
nMaxActivityStarts 311
nMaxActivityStartsInLastSecs 311
nMaxAdminAuditRows 319
nMaxAdminPermRows 333
nMaxAdminRows 333-334
nMaxADSyncLogEvents 340
nMaxBusinessValueRows 334
nMaxGroupDropdownRows 335
nMaxLogBackups 340
nMaxLogFileSize 341
nMaxPercentUsersToDisableOnSync 298
nMaxProfileButtons 335-336, 389, 405
nMaxUserDropdownRows 336
nMaxUsersToDisableOnSync 297
nMinLDAPUsersWithGroupsBeforeDisable 298
NormalizeGroupList 187
NormalizeUserList 254

Developer's Reference Guide | 527

BP Logix Inc
Process Director Documentation

NotifyPwdChangeDays 356
nPDFPageWidth 414
nTaskCompleteDialogHeight 415
nTaskCompleteDialogWidth 414
nTaskCompletePromptDialogHeight 415
nTaskCompletePromptDialogWidth 415
nTimelineLoopCountStarts 311
NTLM_NoLoginButton 416
nUserInactivityTimeoutSecs 427
nWSTimeout 350

O

OVERVIEW 10

P

Parameters 103, 105
Partition Class 191
PasswordResetRedirectURL 356
PDF Class 194
plugin 12
PostEvent 206, 263, 478, 494
PostEvent (static method) 224
Print 59
Process Class 200
Process Script 20
Process Script Handlers 22
Process Timeline 222
ProcessTask Class 210
ProcessTaskUser Class 218
Project Class 222
ProjectActivity Class 225

528 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

ProjectActivityUser Class 229
ProjectReminderTimes 390
Properties 101, 103, 105, 110-111, 113, 139, 141, 145-146, 153, 173, 184, 189, 191,

200, 210, 218, 225, 229, 232, 234-235, 237, 240, 264, 267, 270
Property 104
PwdMinLength 357
PwdMinLetters 357
PwdMinLower 357
PwdMinNumbers 358
PwdMinSymbols 358
PwdMinUpper 358
PwdNoReuseDays 359
PwdNoReuseNumTimes 359
PwdStrength 359
PwdStrengthMessage 360

R

Radio 59-60
RecalcCaseInstanceName 108
RecalcFormInstanceName 168, 468
RecalcInstanceName 207
RefreshParentWorkspaces 328
RemoveCategory 129
RemoveFromGroup 255
RemoveFromGroupWorkspace 472
RemoveObjectFromParent 129
RemovePermissions 130
RemoveRow 60, 180
RemoveSharedDelegate 255
RemoveSIDFromJS 328

Developer's Reference Guide | 529

BP Logix Inc
Process Director Documentation

RemoveUser 188
RemoveUserFromWorkspace 486
RemoveUsersFromActivity 479
RemoveUsersFromStep 494
RemoveUsersFromTask 214
ReplaceUser 486
ReplaceWithUser 256
ReplicatePermsToChildren 131
ReplicatePermsToChildrenAndForms 131
Report Class 231
ReportRemoteURL 366
ResendEmailForUserTask 215, 221
ResponsiveType 416
REST 497, 500, 502
REST Data 497, 500, 502
REST Services 497, 500, 502
ReStart 207, 263, 479, 495
Restart 228
RichText 61
Rollback 225
RoutingSlip 61
RowCount 168
Rule Class 110, 232
Run 208, 479, 495
RunKView 99, 461
RunTimeline 480
RunTimelineWithForm 480
RunWorkflow 495
RunWorkflowWithForm 496

530 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

S

SAML_Artifact_URL 371
SAML_Attrib_CustomDate 371
SAML_Attrib_CustomNumber 372
SAML_Attrib_CustomString 371
SAML_Attrib_CustomString2 372
SAML_Attrib_Email 373
SAML_Attrib_Groups 373
SAML_Attrib_GUID 373
SAML_Attrib_UserID 373
SAML_Attrib_UserName 374
SAML_AuthType 372
SAML_Enable 374
SAML_IP_AssertionCertificate 375
SAML_IP_Certificate 375
SAML_Issuer 372
SAML_My_Certificate 375
SAML_My_PFX 376
SAML_My_PFXPassword 376
SAML_NextURLInRelayState 376
SAML_NoLoginButton 377
SAML_ProviderName 377
SAML_URL 377
SAML_URL_Destination 378
SAML_URL_Logout 378
sAppenateIntegrationKey 354
Save 66
SaveAndSubmit 168
SaveForm 169

Developer's Reference Guide | 531

BP Logix Inc
Process Director Documentation

sCkEditorCustomConfig 417
Script Types 10
sDisableNavigationScroll 408, 418
SearchForms 468
Section 67
SelectDropDown 180
SendEmail (Static Method) 100
SendMessageToAll 453
Sentiment 352
SequenceNumber 490
ServiceHandle 449
SetActivityDueDate 480
SetAttribute 132, 462
SetAttributes 133, 462
SetCaseData 455
SetCaseProperty 456
SetContextUID 453, 456, 462, 468, 472, 474, 476, 481, 487, 491, 496
SetCurrentFormInstance 208
SetCurrentUserContext 256
SetDocReviewable 143
SetDropDownValues 145, 147
SetDueDate 216
SetDuration 216
SetError 216
SetExternalAttribute 133, 462
SetExternalAttributes 134, 463
SetFormData 469
SetFormDataEx 469
SetFormDataField 469
SetFormFields 199

532 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

SetGroupName 135, 463
SetInstanceOwnerDelegate 228
SetMessage 217
SetMetaData 135, 463
SetParameter 104
SetPermissions 136
SetPermissionsEx 137
SetPriority 209
SetPropertyDateTime 109
SetPropertyNumber 109
SetPropertyText 109
SetRuleGroup 234
SetStepDueDate 496
SetValue 181
ShowAttach 68
ShowDocHistoryWhenDisabled 419
SignatureComments 74-75
sLoadingImage 418
sLocalIPs 315
sLogoLink 418
sLogoURL 419
sMobileAdvancedTypes 350
sMobileWebServerURL 308, 354
Sort 76, 182
sPDFInterfaceURL 312
sPickupDirectoryLocation 312
SplitterWidth 419
sReportInterfaceURL 366
sStyleDisabled 420
sStyleEnabled 419

Developer's Reference Guide | 533

BP Logix Inc
Process Director Documentation

sStyleError 420
sStyleRequired 420
Start 209, 481, 497
StartTask 209
sTimeZoneID 313
Sum 76
sUploadAddCookie 350
sUseCSS 421
SwapRows 182
SynchronizeFields 169
SystemVariable Class 234
SystemVariableContext Class 235
SysVar 76

T

Tab 78
TabContent 78
TabStrip 78
TabStripContent 79
Task Class 237
TaskAlreadyCompleteAlert 396
TaskAlreadyCompleteMessage 396
TaskAlreadyCompletePage 396
TaskAssignedReminderTimes 397
TaskDueReminderTimes 397
TaskUsersInTask (Static Method) 222
Termination Reason 88
TestModeIPs 315
TestUserEmailAddress 316
TestUserEmails 316, 391

534 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

Timeline Script 20
TimePicker 79
TimerSecondsCheckProjAdvance 298
TimerSecondsCheckProjReminders 298
TimerSecondsCheckWfAdvance 298
TimerSecondsCheckWfReminders 298

U

UnDelegateUser 256, 487
UnlockForm 169
UnlockUserAccount 257
Update 111
UpdateDocData 144
UpdateLastActivityTime 257
UpdateObject 138
UpdateUser 257
UpdateUserFields 487
UpdateUserLastActivityTime 488
UpdateUserRecord 488
User Class 240
UserExists 258
UserInfoShowEditProfile 400
UserInfoShowSignOut 399
UserInfoSlideOut 400
UserPicker 79
UseWorkspaceHome 421
Using a .DLL file with Your Scripts 33
Using a Specific Process Script File 20, 22
Using REST 443

Developer's Reference Guide | 535

BP Logix Inc
Process Director Documentation

V

ValidationPhonePattern 351
ValidationURLPattern 351
ValidationZipCodePattern 351
Vars 289
Version 491
Visual Studio 12

W

Web Service Authentication Settings 444
Web Service Custom Tasks 87
Web Services 442, 446, 497, 500, 502
What Custom Tasks Can Be Used For 84
Workflow Class 259
Workflow Custom Tasks 84
Workflow Script 20
WorkflowStep Class 264
WorkflowStepUser Class 267
Workspace Class 270
WriteDocumentToDisk 144
Writing a Knowledge View Script Function 25
Writing a Process Script Function 21
Writing the Script Handler 23
wsAdmin 449
wsCase 453
wsContent 456
wsForm 463
wsGroup 469
wsReport 472
wsRule 474

536 | Developer's Reference Guide

BP Logix Inc
Process Director Documentation

wsTimeline 476
wsUser 481
wsUtil 488
wsWorkflow 491

Developer's Reference Guide | 537

BP Logix Inc
Process Director Documentation

This page intentionally left blank.

	Contents
	Contents
	Documentation Formatting Note
	Text and Code Formatting Conventions
	Icons
	Other Conventions

	Development Overview
	Script Types
	.NET Forms
	Customization through Scripting

	Custom Scripting/Development
	Installing the BP Logix Visual Studio Plugin
	Form Scripts
	Form Script Events #

	Process Scripts
	Process Script Handlers

	Knowledge View Scripts
	Custom ASPX Pages
	Creating ASP.NET Forms
	Adding a New Form Definition
	Editing an ASP.NET Form #
	Developing a Form in the .NET environment
	Form Controls

	Custom Workspace Portlets
	Custom Tasks
	What Custom Tasks Can Be Used For
	Form Custom Tasks
	Process Custom Tasks
	How Custom Tasks Work
	Creating a Custom Task
	Web Service Custom Tasks

	Classes
	Common Termination Reasons
	bp Class
	Business Value Class
	Case Class
	ConditionSet Class
	Condition Struct
	ContentObject Class
	DataSource Class
	DocumentObject Class
	Dropdown Object Class
	DropdownValue Object Class
	Excel Class
	Folder Class
	Form Class
	FormControl Class
	FormMessageString Class
	Group Class
	MetaCategory Class
	Partition Class
	PDF Class
	Process Class
	ProcessTask Class
	ProcessTaskUser Class
	Project (Process Timeline) Class
	ProjectActivity Class
	ProjectActivityUser Class
	Report Class
	Rule Class
	SystemVariable Class
	SystemVariableContext Class
	Task Class
	User Class
	Workflow Class
	WorkflowStep Class
	WorkflowStepUser Class
	Workspace Class

	JavaScript APIs
	Form Data #
	iPopupSimple Command #

	Language/Culture Localization
	Customizing the Process Director UI
	Form Customization/Localization

	Customization File
	Form Control Styles
	Creating Your Own Custom Variables
	Session Variables
	Shared Delegation

	Custom Variables
	Active Directory Custom Variables
	Administration Custom Variables
	Auditing Custom Variables
	Default Settings Custom Variables
	LDAP Custom Variables
	List Maximum Custom Variables
	Logs Custom Variables
	Miscellaneous Variables
	ML and AI Custom Variables
	Mobile Application Custom Variables
	Password Enforcement Custom Variables
	Process Administration Custom Variables
	Reporting Tool Custom Variables
	REST Custom Variables
	SAML Custom Variables
	Social Media Custom Variables
	System Custom Variables
	Task Custom Variables
	User Info SlideOut Custom Variables
	User Interface Custom Variables
	User Custom Variables

	UI Customization
	Adding a Custom CSS Stylesheet to Process Director #
	Customizing CKEditor #
	Environment Message Customization #

	Using Web Services
	REST Services #
	Other REST Services

	Web Service Authentication Settings #
	Extending BP Logix Web Services #
	Calling Other Web Services #
	Available Web Services
	Service Handle Method #
	wsAdmin
	wsCase
	wsContent
	wsForm
	wsGroup
	wsReport
	wsRule
	wsTimeline
	wsUser
	wsUtil
	wsWorkflow

	REST Services
	The REST Request #
	The REST Response #
	More Information about Rest Services
	JSON and XML for REST
	JSONPath and XPath

	Index

